Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;51(6-7):609-31.
doi: 10.1387/ijdb.072365lf.

Mouse models to study inner ear development and hereditary hearing loss

Affiliations
Free article
Review

Mouse models to study inner ear development and hereditary hearing loss

Lilach M Friedman et al. Int J Dev Biol. 2007.
Free article

Abstract

Hereditary sensorineural hearing loss, derived from inner ear defects, is the most common hereditary disability with a prevalence of 1 in 1,000 children, although it can be present in up to 15% of births in isolated communities. The mouse serves as an ideal animal model to identify new deafness-related genes and to study their roles in vivo. This review describes mouse models for genes that have been linked with hearing impairment (HI) in humans. Mutations in several groups of genes have been linked with HI in both mice and humans. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. For example, the roles of collagens and tectorins in the tectorial membrane, as well as the necessity of intact links between the hair cell projections, stereocilia and kinocilia, have been discovered in mice. Accurate endolymph composition and the proteins which participate in its production were found to be crucial for inner ear function, as well as several motor proteins such as prestin and myosins. Two systematic projects, KOMP and EUCOMM, which are currently being carried out to create knock-out and conditional mutants for every gene in the mouse genome, promise that many additional deafness-related genes will be identified in the next years, providing models for all forms of human deafness.

PubMed Disclaimer

Similar articles

Cited by

Publication types