Divergence of transcription factor binding sites across related yeast species
- PMID: 17690298
- DOI: 10.1126/science.1140748
Divergence of transcription factor binding sites across related yeast species
Abstract
Characterization of interspecies differences in gene regulation is crucial for understanding the molecular basis of both phenotypic diversity and evolution. By means of chromatin immunoprecipitation and DNA microarray analysis, the divergence in the binding sites of the pseudohyphal regulators Ste12 and Tec1 was determined in the yeasts Saccharomyces cerevisiae, S. mikatae, and S. bayanus under pseudohyphal conditions. We have shown that most of these sites have diverged across these species, far exceeding the interspecies variation in orthologous genes. A group of Ste12 targets was shown to be bound only in S. mikatae and S. bayanus under pseudohyphal conditions. Many of these genes are targets of Ste12 during mating in S. cerevisiae, indicating that specialization between the two pathways has occurred in this species. Transcription factor binding sites have therefore diverged substantially faster than ortholog content. Thus, gene regulation resulting from transcription factor binding is likely to be a major cause of divergence between related species.
Comment in
-
Evolution. An embarrassment of switches.Science. 2007 Aug 10;317(5839):758-9. doi: 10.1126/science.1146921. Science. 2007. PMID: 17690280 No abstract available.
Similar articles
-
Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.Yeast. 2009 Mar;26(3):147-65. doi: 10.1002/yea.1654. Yeast. 2009. PMID: 19243081
-
Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.Biochem J. 2005 Jul 1;389(Pt 1):27-35. doi: 10.1042/BJ20050223. Biochem J. 2005. PMID: 15725072 Free PMC article.
-
Evolution of alternative transcriptional circuits with identical logic.Nature. 2006 Sep 28;443(7110):415-20. doi: 10.1038/nature05099. Nature. 2006. PMID: 17006507
-
Transcriptional networks: reverse-engineering gene regulation on a global scale.Curr Opin Microbiol. 2004 Dec;7(6):638-46. doi: 10.1016/j.mib.2004.10.009. Curr Opin Microbiol. 2004. PMID: 15556037 Review.
-
Regulatory DNA-binding proteins in yeast: an overview.Yeast. 1990 Jul-Aug;6(4):271-97. doi: 10.1002/yea.320060402. Yeast. 1990. PMID: 2204245 Review. No abstract available.
Cited by
-
An integrated encyclopedia of DNA elements in the human genome.Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247. Nature. 2012. PMID: 22955616 Free PMC article.
-
Evolutionary tinkering with conserved components of a transcriptional regulatory network.PLoS Biol. 2010 Mar 9;8(3):e1000329. doi: 10.1371/journal.pbio.1000329. PLoS Biol. 2010. PMID: 20231876 Free PMC article.
-
Variable transcription factor binding: a mechanism of evolutionary change.PLoS Biol. 2010 Mar 23;8(3):e1000342. doi: 10.1371/journal.pbio.1000342. PLoS Biol. 2010. PMID: 20351770 Free PMC article.
-
Nucleosome positioning: how is it established, and why does it matter?Dev Biol. 2010 Mar 15;339(2):258-66. doi: 10.1016/j.ydbio.2009.06.012. Epub 2009 Jun 13. Dev Biol. 2010. PMID: 19527704 Free PMC article. Review.
-
Evolution of transcription factor binding through sequence variations and turnover of binding sites.Genome Res. 2022 Jun;32(6):1099-1111. doi: 10.1101/gr.276715.122. Epub 2022 May 26. Genome Res. 2022. PMID: 35618416 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases