Quantitative morphological signatures define local signaling networks regulating cell morphology
- PMID: 17588932
- DOI: 10.1126/science.1140324
Quantitative morphological signatures define local signaling networks regulating cell morphology
Abstract
Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.
Similar articles
-
Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates.Oncogene. 2009 Apr 2;28(13):1570-83. doi: 10.1038/onc.2009.2. Epub 2009 Feb 23. Oncogene. 2009. PMID: 19234490
-
Regulatory network for cell shape changes during Drosophila ventral furrow formation.J Theor Biol. 2006 Mar 7;239(1):49-62. doi: 10.1016/j.jtbi.2005.07.011. Epub 2005 Sep 2. J Theor Biol. 2006. PMID: 16139845
-
Plasticity of epithelial cell shape in response to upstream signals: a whole-organism study using transgenic Hydra.Zoology (Jena). 2009;112(3):185-94. doi: 10.1016/j.zool.2008.09.002. Epub 2009 Feb 7. Zoology (Jena). 2009. PMID: 19201587
-
Robust signaling networks of the adipose secretome.Trends Endocrinol Metab. 2009 Jan;20(1):1-7. doi: 10.1016/j.tem.2008.08.006. Epub 2008 Oct 17. Trends Endocrinol Metab. 2009. PMID: 18930409 Review.
-
Quantitative in vivo microscopy: the return from the 'omics'.Curr Opin Biotechnol. 2006 Oct;17(5):501-10. doi: 10.1016/j.copbio.2006.07.005. Epub 2006 Aug 8. Curr Opin Biotechnol. 2006. PMID: 16899361 Review.
Cited by
-
Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment.Cell Mol Bioeng. 2020 Jun 15;13(4):341-357. doi: 10.1007/s12195-020-00625-0. eCollection 2020 Aug. Cell Mol Bioeng. 2020. PMID: 32952734 Free PMC article. Review.
-
How to understand the cell by breaking it: network analysis of gene perturbation screens.PLoS Comput Biol. 2010 Feb 26;6(2):e1000655. doi: 10.1371/journal.pcbi.1000655. PLoS Comput Biol. 2010. PMID: 20195495 Free PMC article. No abstract available.
-
High-Content Image-Based Single-Cell Phenotypic Analysis for the Testicular Toxicity Prediction Induced by Bisphenol A and Its Analogs Bisphenol S, Bisphenol AF, and Tetrabromobisphenol A in a Three-Dimensional Testicular Cell Co-culture Model.Toxicol Sci. 2020 Feb 1;173(2):313-335. doi: 10.1093/toxsci/kfz233. Toxicol Sci. 2020. PMID: 31750923 Free PMC article.
-
Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation.Front Bioeng Biotechnol. 2022 Jan 27;9:802794. doi: 10.3389/fbioe.2021.802794. eCollection 2021. Front Bioeng Biotechnol. 2022. PMID: 35155409 Free PMC article.
-
Single-cell morphology encodes metastatic potential.Sci Adv. 2020 Jan 22;6(4):eaaw6938. doi: 10.1126/sciadv.aaw6938. eCollection 2020 Jan. Sci Adv. 2020. PMID: 32010778 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases