CanPredict: a computational tool for predicting cancer-associated missense mutations
- PMID: 17537827
- PMCID: PMC1933186
- DOI: 10.1093/nar/gkm405
CanPredict: a computational tool for predicting cancer-associated missense mutations
Abstract
Various cancer genome projects are underway to identify novel mutations that drive tumorigenesis. While these screens will generate large data sets, the majority of identified missense changes are likely to be innocuous passenger mutations or polymorphisms. As a result, it has become increasingly important to develop computational methods for distinguishing functionally relevant mutations from other variations. We previously developed an algorithm, and now present the web application, CanPredict (http://www.canpredict.org/ or http://www.cgl.ucsf.edu/Research/genentech/canpredict/), to allow users to determine if particular changes are likely to be cancer-associated. The impact of each change is measured using two known methods: Sorting Intolerant From Tolerant (SIFT) and the Pfam-based LogR.E-value metric. A third method, the Gene Ontology Similarity Score (GOSS), provides an indication of how closely the gene in which the variant resides resembles other known cancer-causing genes. Scores from these three algorithms are analyzed by a random forest classifier which then predicts whether a change is likely to be cancer-associated. CanPredict fills an important need in cancer biology and will enable a large audience of biologists to determine which mutations are the most relevant for further study.
Figures
Similar articles
-
Distinguishing cancer-associated missense mutations from common polymorphisms.Cancer Res. 2007 Jan 15;67(2):465-73. doi: 10.1158/0008-5472.CAN-06-1736. Cancer Res. 2007. PMID: 17234753
-
Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods.Nucleic Acids Res. 2006 Mar 6;34(5):1317-25. doi: 10.1093/nar/gkj518. Print 2006. Nucleic Acids Res. 2006. PMID: 16522644 Free PMC article.
-
Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach.Hum Mutat. 2009 Jan;30(1):99-106. doi: 10.1002/humu.20798. Hum Mutat. 2009. PMID: 18570327
-
Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.Neuroscience. 2007 Apr 14;145(4):1273-9. doi: 10.1016/j.neuroscience.2006.09.004. Epub 2006 Oct 19. Neuroscience. 2007. PMID: 17055652 Review.
-
Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods.Hum Mutat. 2009 May;30(5):703-14. doi: 10.1002/humu.20938. Hum Mutat. 2009. PMID: 19267389 Review.
Cited by
-
Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors.Hum Genomics. 2024 Aug 28;18(1):90. doi: 10.1186/s40246-024-00663-z. Hum Genomics. 2024. PMID: 39198917 Free PMC article.
-
Variant Impact Predictor database (VIPdb), version 2: Trends from 25 years of genetic variant impact predictors.bioRxiv [Preprint]. 2024 Jun 28:2024.06.25.600283. doi: 10.1101/2024.06.25.600283. bioRxiv. 2024. Update in: Hum Genomics. 2024 Aug 28;18(1):90. doi: 10.1186/s40246-024-00663-z. PMID: 38979289 Free PMC article. Updated. Preprint.
-
ASCARIS: Positional feature annotation and protein structure-based representation of single amino acid variations.Comput Struct Biotechnol J. 2023 Sep 17;21:4743-4758. doi: 10.1016/j.csbj.2023.09.017. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37822561 Free PMC article.
-
Actionability classification of variants of unknown significance correlates with functional effect.NPJ Precis Oncol. 2023 Jul 15;7(1):67. doi: 10.1038/s41698-023-00420-w. NPJ Precis Oncol. 2023. PMID: 37454202 Free PMC article.
-
Computational approaches for predicting variant impact: An overview from resources, principles to applications.Front Genet. 2022 Sep 29;13:981005. doi: 10.3389/fgene.2022.981005. eCollection 2022. Front Genet. 2022. PMID: 36246661 Free PMC article. Review.
References
-
- Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312:1228–1230. - PubMed
-
- Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–522. - PubMed
-
- Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274. - PubMed
-
- Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet. 2005;37:590–592. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials