Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;85(1):79-87.
doi: 10.1139/y06-103.

The regulation of smooth muscle contractility by zipper-interacting protein kinase

Affiliations
Review

The regulation of smooth muscle contractility by zipper-interacting protein kinase

Eikichi Ihara et al. Can J Physiol Pharmacol. 2007 Jan.

Abstract

Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources