Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 May 15;109(10):4245-8.
doi: 10.1182/blood-2006-08-039347. Epub 2007 Jan 30.

Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs

Affiliations
Comparative Study

Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs

Caridad Martinez et al. Blood. .

Erratum in

  • Blood. 2007 Aug 1;110(3):826

Abstract

Mesenchymal stromal cells (MSCs) have enormous potential for the regeneration of bone, cartilage, and other tissues derived from primitive mesoderm. Despite extensive research, there is still no single marker that reliably identifies MSCs within the bone marrow. Using immunocytochemistry and flow cytometry, we demonstrate here that the neural ganglioside GD2 is expressed by MSCs either newly isolated from bone marrow or expanded in tissue culture; this finding was supported by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showing expression of the mRNA for GD2 synthase, an essential enzyme for GD2 biosynthesis. GD2 was also expressed on MSCs isolated from adipose tissue, but not on foreskin fibroblasts. Importantly, MSCs were the only cells within normal marrow that expressed this marker. Thus, GD2 appears to be the first reported single surface marker that uniquely distinguishes MSCs from other marrow elements. GD2 may prove valuable to study MSC biology and for the preparation of MSCs for clinical applications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
GD2 expression on marrow MSCs. (Ai) Photomicrograph of undifferentiated MSCs showing the characteristic spindle shape and adherent properties of the cells. Original magnification, ×40. (ii) Flow cytometry histograms demonstrating the typical expression pattern of surface antigens (—) isotype and control (- - -), as indicated. (iii-v) Immunocytochemical staining demonstrating the differentiation of MSCs into osteoblasts (Alizarin Red stain), adipocytes (Oil Red O stain), and chondroblasts (Alcian Blue stain). (B) Immunocytochemical staining of culture-expanded MSCs for GD2 (i) and staining without the primary anti-GD2 antibody as a negative control (ii). (iii) Flow cytometry histogram showing GD2 expression (bold line) by MSCs and the isotype control (thin line). (iv) Reverse-transcription PCR for GD2 synthase. Results using primers generating a 230-bp product are shown at the top, primers generating a 99-bp product are in the middle, and β2-microglobulin as a control for the quality and quantity of RNA is at the bottom. No RNA indicates a complete reaction omitting the RNA sample; NB, RNA from neuroblastoma cells (positive control), MSC, culture-expanded after marrow derivation; MNCs, RNA from blood mononuclear cells (negative control); No RT, reaction with MSC RNA, but omitting reverse transcriptase. (Ci) Flow cytometry histogram of bone marrow cells for CD45 expression. The R1 gate indicates CD45 cells. (ii) Analysis of the CD45 cells from the R1 gate for CD105 and CD73 expression. The R2 gate indicates the double-positive cells. (iii) Analysis of the CD45CD105+ CD73+ cells from the R2 gate for GD2 expression. These cells, MSCs from freshly harvested bone marrow, were never in tissue culture. (D) Flow cytometry histograms of GD2 expression on MSCs after serial passage in tissue culture. The experimental and control curves are as indicated in panel B. (E) Immunocytochemical staining of adipose-derived MSCs (i) and a negative control (ii) in which the primary anti-GD2 antibody was omitted. The specimens were lightly counterstained with hematoxylin. Original magnification, ×4. Immunocytochemical staining of foreskin fibroblasts (iii) and a negative control (iv) as for the adipose-derived MSCs. Original magnification, ×4. (Fi) Flow cytometric histograms showing the lack of GD2 expression on unfractionated bone marrow cells (upper left, BM), and on marrow cells expressing CD45 (leukocytes), CD34 (hematopoietic progenitors), CD33 (myeloid cells), CD3 (T-lymphocytes), or CD19 (B-lymphocytes). anti-GD2 antibody (—), isotype control (- - -). (ii) Anti-GD2 immunohistochemical staining of a bone marrow biopsy specimen (left) and MSCs (right, positive control). Both specimens were counterstained with hematoxylin.
Figure 2
Figure 2
Ex vivo expansion and trilineage differentiation of GD2-selected MSCs. Photomicrograph of undifferentiated, ex vivo–expanded cells (upper panel) after isolation by GD2 selection. The characteristic spindle shape morphology and plastic adherence of MSCs is shown. Immunocytochemical staining (lower panels) demonstrates the differentiation of the GD2-selected MSCs into osteoblasts (Alizarin Red stain), adipocytes (Oil Red O stain), and chondroblasts (Alcian Blue stain).

Similar articles

Cited by

References

    1. Horwitz E, Le BK, Dominici M, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. - PubMed
    1. Dominici M, Le BK, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. - PubMed
    1. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441. - PubMed
    1. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96:1593–1603. - PubMed
    1. Horwitz EM, Gordon PL, Koo WKK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99:8932–8937. - PMC - PubMed

Publication types

Substances