Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jan 26;282(4):2587-95.
doi: 10.1074/jbc.M607298200. Epub 2006 Nov 22.

APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G

Affiliations
Free article
Comparative Study

APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G

Rebecca K Holmes et al. J Biol Chem. .
Free article

Abstract

APOBEC3F (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1-like protein 3F) is a cytidine deaminase that, like APOBEC3G, is able to restrict the replication of HIV-1/delta vif. Initial studies revealed high numbers of mutations in the cDNA of viruses produced in the presence of these proteins, suggesting that cytidine deamination underpinned the inhibition of infection. However, we have recently shown that catalytically inactive APOBEC3G proteins, derived through mutation of the C-terminal cytidine deaminase motif, still exert a substantial antiviral effect. Here, we have generated a panel of APOBEC3F mutant proteins and show that the C-terminal cytidine deaminase motif is essential for catalytic activity and that catalytic activity is not necessary for the antiviral effect of APOBEC3F. Furthermore, we demonstrate that the antiviral activities of wild-type and catalytically inactive APOBEC3F and APOBEC3G proteins correspond well with reductions in the accumulation of viral reverse transcription products. Additional comparisons between APOBEC3F and APOBEC3G suggest that the loss of deaminase activity is more detrimental to APOBEC3G function than to APOBEC3F function, as reflected by perturbations to the suppression of reverse transcript accumulation as well as antiviral activity. Taken together, these data suggest that both APOBEC3F and APOBEC3G are able to function as antiviral factors in the absence of cytidine deamination, that this editing-independent activity is an important aspect of APOBEC protein-mediated antiviral phenotypes, but that APOBEC3F may be a better model in which to study it.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources