Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 3;45(39):11827-35.
doi: 10.1021/bi0609319.

Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization

Affiliations

Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization

Haibin Luo et al. Biochemistry. .

Abstract

Coronavirus nucleocapsid (N) protein envelops the genomic RNA to form long helical nucleocapsid during virion assembly. Since N protein oligomerization is usually a crucial step in this process, characterization of such an oligomerization will help in the understanding of the possible mechanisms for nucleocapsid formation. The N protein of severe acute respiratory syndrome coronavirus (SARS-CoV) was recently discovered to self-associate by its carboxyl terminus. In this study, to further address the detailed understanding of the association feature of this C-terminus, its oligomerization was systematically investigated by size exclusion chromatography and chemical cross-linking assays. Our results clearly indicated that the C-terminal domain of SARS-CoV N protein could form not only dimers but also trimers, tetramers, and hexamers. Further analyses against six deletion mutants showed that residues 343-402 were necessary and sufficient for this C-terminus oligomerization. Although this segment contains many charged residues, differences in ionic strength have no effects on its oligomerization, indicating the absence of electrostatic force in SARS-CoV N protein C-terminus self-association. Gel shift assay results revealed that the SARS-CoV N protein C-terminus is also able to associate with nucleic acids and residues 363-382 are the responsible interaction partner, demonstrating that this fragment might involve genomic RNA binding sites. The fact that nucleic acid binding could promote the SARS-CoV N protein C-terminus to form high-order oligomers implies that the oligomeric SARS-CoV N protein probably combines with the viral genomic RNA in triggering long nucleocapsid formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources