On autosomal dominant cerebellar ataxia (ADCA) other than polyglutamine diseases, with special reference to chromosome 16q22.1-linked ADCA
- PMID: 16961073
- DOI: 10.1111/j.1440-1789.2006.00719.x
On autosomal dominant cerebellar ataxia (ADCA) other than polyglutamine diseases, with special reference to chromosome 16q22.1-linked ADCA
Abstract
Autosomal dominant cerebellar ataxia (ADCA) is a group of heterogeneous conditions. More than 20 genes or gene loci have been identified that are responsible for ADCA. Although expansions of the trinucleotide (CAG) repeat that encode polyglutamine are known to cause some forms of ADCA, growing knowledge about the genetic basis of ADCA indicates that many subtypes of ADCA are caused by mutations other than the CAG repeat/polyglutamine expansion. In this paper, we review ADCA caused by mutations other than polyglutamine expansions (i.e. "non-polyglutamine diseases"). We also describe the neuropathology of chromosome 16q22.1-linked ADCA, which appears to be the most common non-polyglutamine disease in Japan. What we find to be characteristic on the chromosome 16q22.1-linked ADCA brain is the presence of atrophic Purkinje cells surrounded by the formation of amorphous material, the latter composed of the Purkinje cell dendrites stemming from the cell bodies, the presynaptic terminals innervated by certain neurons, and the astroglial processes. Such neuropathological findings seem to be unique for this disease.
Similar articles
-
The chromosome 16q-linked autosomal dominant cerebellar ataxia (16q-ADCA): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell: The 50th Anniversary of Japanese Society of Neuropathology.Neuropathology. 2010 Oct;30(5):490-4. doi: 10.1111/j.1440-1789.2010.01142.x. Neuropathology. 2010. PMID: 20667009
-
Clinical and genetic epidemiological study of 16q22.1-linked autosomal dominant cerebellar ataxia in western Japan.Acta Neurol Scand. 2007 Aug;116(2):123-7. doi: 10.1111/j.1600-0404.2007.00815.x. Acta Neurol Scand. 2007. PMID: 17661799
-
CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia.Brain. 2001 Oct;124(Pt 10):1939-47. doi: 10.1093/brain/124.10.1939. Brain. 2001. PMID: 11571212
-
[Molecular genetic approach to spinocerebellar ataxias].Rinsho Shinkeigaku. 2009 Nov;49(11):907-9. doi: 10.5692/clinicalneurol.49.907. Rinsho Shinkeigaku. 2009. PMID: 20030245 Review. Japanese.
-
Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology.Eur J Hum Genet. 2000 Jan;8(1):4-18. doi: 10.1038/sj.ejhg.5200403. Eur J Hum Genet. 2000. PMID: 10713882 Review.
Cited by
-
Tyrosine phosphorylation of Dbl regulates GTPase signaling.J Biol Chem. 2014 Jun 13;289(24):17195-202. doi: 10.1074/jbc.M114.573782. Epub 2014 Apr 28. J Biol Chem. 2014. PMID: 24778185 Free PMC article.
-
Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer.J Virol. 2008 Oct;82(20):9964-77. doi: 10.1128/JVI.01299-08. Epub 2008 Aug 6. J Virol. 2008. PMID: 18684813 Free PMC article.
-
Thymidine Kinase 2 and Mitochondrial Protein COX I in the Cerebellum of Patients with Spinocerebellar Ataxia Type 31 Caused by Penta-nucleotide Repeats (TTCCA)n.Cerebellum. 2023 Feb;22(1):70-84. doi: 10.1007/s12311-021-01364-2. Epub 2022 Jan 27. Cerebellum. 2023. PMID: 35084690 Free PMC article.
-
Plekhg4 is a novel Dbl family guanine nucleotide exchange factor protein for rho family GTPases.J Biol Chem. 2013 May 17;288(20):14522-14530. doi: 10.1074/jbc.M112.430371. Epub 2013 Apr 9. J Biol Chem. 2013. PMID: 23572525 Free PMC article.
-
Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31.Neuropathology. 2014 Jun;34(3):261-7. doi: 10.1111/neup.12090. Epub 2013 Dec 17. Neuropathology. 2014. PMID: 24344778 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources