Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Oct;12(2):315-45.
doi: 10.1016/0168-0102(91)90001-f.

Genes for human catecholamine-synthesizing enzymes

Affiliations
Review

Genes for human catecholamine-synthesizing enzymes

T Nagatsu. Neurosci Res. 1991 Oct.

Abstract

Catecholamine neurotransmitters--dopamine, noradrenaline (norepinephrine), adrenaline (epinephrine)--are synthesized in catecholaminergic neurons from tyrosine, via dopa, dopamine and noradrenaline, to adrenaline. Four enzymes are involved in the biosynthesis of adrenaline: (1) tyrosine 3-mono-oxygenase (tyrosine hydroxylase, TH); (2) aromatic L-amino acid decarboxylase (AADC, or DOPA decarboxylase, DDC); (3) dopamine beta-mono-oxygenase (dopamine beta-hydroxylase, DBH); and (4) noradrenaline N-methyltransferase (phenylethanolamine N-methyltransferase, PNMT). We cloned full-length complementary DNAs (cDNAs) and genomic DNAs of human catecholamine-synthesizing enzymes (TH, AADC, DBH, PNMT) and determined the nucleotide sequences and the deduced amino acid sequences. We discovered multiple messenger RNAs (mRNAs) of human TH, human DBH, and human PNMT. Four types (types 1, 2, 3, and 4) of human TH mRNAs are produced by alternative mRNA splicing mechanism from a single gene. We found the multiple forms of TH in two species of monkeys, but only a single mRNA corresponding to human TH type 1 in Sunkus murinus and rat, suggesting that the multiplicity of TH mRNA is primate-specific. Total TH mRNA, especially the most abundant type 2 and type 1 mRNAs in the human brain, were found to be reduced during the process of aging. The multiple forms of human TH may give additional regulation to the human enzyme, probably through altered phosphorylation and activation. We have succeeded in producing transgenic mice carrying multiple copies of the human TH gene in brain and adrenal medulla. The level of human TH mRNA in brain was about 50-fold higher than that of endogenous mouse TH mRNA. In situ hybridization demonstrated an enormous region-specific expression of the transgene in substantia nigra and ventral tegmental area. TH immunoreactivity in these regions, Western blot analysis, and TH activity measurements proved definitely increased TH in transgenic mice, though not comparable to the increment of the mRNA. However, catecholamine levels in transgenics were not significantly different from those in non-transgenics. The results suggest complex regulatory mechanisms for human TH gene expression and for the catecholamine levels in transgenic mice. Kohsaka and Uchida in collaboration with us applied genetically engineered (human TH cDNA-transfected) non-neuronal cells to brain tissue transplantation in parkinsonian rat models. We isolated and sequenced a full-length cDNA encoding human AADC.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources