Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 15;54(3):234-42.
doi: 10.1002/glia.20379.

P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro

Affiliations

P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro

Stephen D Skaper et al. Glia. .

Abstract

The P2X(7) receptor has been implicated in the release of cytokines and in the induction of cell death, and is up-regulated in a transgenic mouse model of Alzheimer's disease. Using cocultures of rat cortical neurons and microglia, we show that ATP and the more potent P2X(7) agonist benzoylbenzoyl-ATP (BzATP) cause neuronal cell injury. The deleterious effects of BzATP-treated microglia were prevented by nonselective P2X antagonists (PPADS and oxidized ATP) and by the more selective P2X(7) antagonist Brilliant Blue G. Similar concentrations of BzATP caused release of superoxide and nitric oxide from isolated microglia, and neuronal cell injury was attenuated by a superoxide dismutase mimetic and by a peroxynitrite decomposition catalyst, suggesting a role for reactive oxide species. Cocultures composed of wild-type cortical neurons, and microglia from P2X(7) receptor-deficient mice failed to exhibit neuronal cell injury in the presence of BzATP, but retained sensitivity to injury when microglia were derived from genotypically matched normal (P2X(7) (+/+) mice), thereby establishing P2X(7) involvement in the injury process. P2X(7) receptor activation on microglia thus appears necessary for microglial-mediated injury of neurons, and proposes that targeting P2X(7) receptors may constitute a novel approach for the treatment of acute and chronic neurodegenerative disorders where a microglial component is evident.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources