Mechanisms of establishment of persistent SARS-CoV-infected cells
- PMID: 16808902
- PMCID: PMC7092879
- DOI: 10.1016/j.bbrc.2006.06.086
Mechanisms of establishment of persistent SARS-CoV-infected cells
Abstract
Previously, we reported the establishment of cells with persistent SARS-CoV infection after apoptotic events and showed that both JNK and PI3K/Akt signaling pathways are important for persistence by treatment with inhibitors at the early stages of SARS-CoV infection. However, the mechanisms of establishment of persistent infection are still unclear. In this study, we investigated which signaling pathways play important roles in escape from apoptosis in cells infected with SARS-CoV. In persistently infected cells at 50h.p.i., PI3K/Akt, JNK, p38 MAPK and Bcl-2 were phosphorylated and the protein levels of Bcl-2 and Bcl-xL were increased. When surviving cells were treated with the JNK-specific inhibitor, SP600125, at 50h.p.i., all cells died, suggesting that the JNK signaling pathway is necessary for maintenance of persistently infected cells. Among the signaling pathways in persistently infected cells, Akt and JNK were phosphorylated in SARS-CoV-nucleocapsid (N) protein-expressing Vero E6 cells using vaccinia viral vector (DIs), strongly suggesting that N protein-induced phosphorylation of Akt and JNK are necessary to establish persistence. These results indicated that at least four proteins, Akt, JNK, Bcl-2 and Bcl-xL, are necessary for survival of persistently SARS-CoV-infected cells.
Figures
Similar articles
-
JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells.Biochim Biophys Acta. 2005 Jun 30;1741(1-2):4-10. doi: 10.1016/j.bbadis.2005.04.004. Biochim Biophys Acta. 2005. PMID: 15916886 Free PMC article.
-
Enhancement of cytotoxicity against Vero E6 cells persistently infected with SARS-CoV by Mycoplasma fermentans.Arch Virol. 2007;152(5):1019-25. doi: 10.1007/s00705-006-0924-7. Epub 2007 Feb 7. Arch Virol. 2007. PMID: 17277901 Free PMC article.
-
Signal transduction in SARS-CoV-infected cells.Ann N Y Acad Sci. 2007 Apr;1102(1):86-95. doi: 10.1196/annals.1408.006. Ann N Y Acad Sci. 2007. PMID: 17470913 Free PMC article. Review.
-
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.FEBS Lett. 2006 Feb 20;580(5):1417-24. doi: 10.1016/j.febslet.2006.01.066. Epub 2006 Jan 30. FEBS Lett. 2006. PMID: 16458888 Free PMC article.
-
SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium.Virus Res. 2008 Apr;133(1):33-44. doi: 10.1016/j.virusres.2007.03.013. Epub 2007 Apr 23. Virus Res. 2008. PMID: 17451829 Free PMC article. Review.
Cited by
-
Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19.Am J Physiol Lung Cell Mol Physiol. 2021 Jun 1;320(6):L1186-L1193. doi: 10.1152/ajplung.00056.2021. Epub 2021 Mar 9. Am J Physiol Lung Cell Mol Physiol. 2021. PMID: 33689516 Free PMC article.
-
Regulation of Stress Responses and Translational Control by Coronavirus.Viruses. 2016 Jul 4;8(7):184. doi: 10.3390/v8070184. Viruses. 2016. PMID: 27384577 Free PMC article. Review.
-
Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.J Virol. 2010 Jun;84(12):6050-9. doi: 10.1128/JVI.00213-10. Epub 2010 Apr 14. J Virol. 2010. PMID: 20392858 Free PMC article.
-
Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection.J Mol Biol. 2008 Feb 8;376(1):23-34. doi: 10.1016/j.jmb.2007.11.081. Epub 2007 Dec 4. J Mol Biol. 2008. PMID: 18155731 Free PMC article.
-
Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology.BioData Min. 2020 Nov 10;13(1):19. doi: 10.1186/s13040-020-00229-4. BioData Min. 2020. PMID: 33292385 Free PMC article.
References
-
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. - PubMed
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous