Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;18(11):1834-43.
doi: 10.1016/j.cellsig.2006.01.022. Epub 2006 May 24.

Coupling receptor tyrosine kinases to Rho GTPases--GEFs what's the link

Affiliations
Review

Coupling receptor tyrosine kinases to Rho GTPases--GEFs what's the link

Martin R Schiller. Cell Signal. 2006 Nov.

Abstract

Rho GTPases are molecular switches involved in the regulation of many cellular processes. This review summarizes work examining how stimulation of receptor tyrosine kinases (RTKs) leads to the activation of Rho guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. The collective findings strongly suggest that RTK signaling to Rho proteins is a general signal transduction mechanism, like RTK mediated activation of phosphatidyl inositol 3-kinase, phospholipase Cgamma, and the mitogen activated protein kinase (MAPK) pathway. More than half of the 58 known human RTKs activate at least one Rho family member. Likewise, 16 Rho GEFs directly interact with and/or are phosphorylated by a RTK. The specificity of receptor tyrosine kinase/Rho GEF signaling seems to be somewhat promiscuous. There several cases where multiple RTKs activate the same Rho GEF and where a single RTK can activate multiple Rho GEFs. Expression analysis indicates that the average human tissue contains transcripts for 33 RTKs, 34 Rho GEFs, and 14 Rho GTPases with each tissue containing a unique complement of these proteins. Given the promiscuity of RTKs for Rho GEFs, Rho GEFs for Rho GTPases, and the large number of these proteins expressed in cells, a complex combinatorial network of proteins in these families may contribute to coding specific signals and cell responses from RTKs.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources