Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 20:7:163.
doi: 10.1186/1471-2105-7-163.

PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory

Affiliations

PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory

Yu Xue et al. BMC Bioinformatics. .

Abstract

Background: As a reversible and dynamic post-translational modification (PTM) of proteins, phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes. Although many studies have been contributed on the molecular mechanism of phosphorylation dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated.

Results: In this work, we present a novel, versatile and comprehensive program, PPSP (Prediction of PK-specific Phosphorylation site), deployed with approach of Bayesian decision theory (BDT). PPSP could predict the potential phosphorylation sites accurately for approximately 70 PK (Protein Kinase) groups. Compared with four existing tools Scansite, NetPhosK, KinasePhos and GPS, PPSP is more accurate and powerful than these tools. Moreover, PPSP also provides the prediction for many novel PKs, say, TRK, mTOR, SyK and MET/RON, etc. The accuracy of these novel PKs are also satisfying.

Conclusion: Taken together, we propose that PPSP could be a potentially powerful tool for the experimentalists who are focusing on phosphorylation substrates with their PK-specific sites identification. Moreover, the BDT strategy could also be a ubiquitous approach for PTMs, such as sumoylation and ubiquitination, etc.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The outline of the training and procedure of PPSP.
Figure 2
Figure 2
the distribution of risk difference of random and human proteome data set of PKA-specific site prediction is diagramed in Figure 2. A. Distribution of Risk Difference of random data set (serine) of PKA-specific site prediction. B. Distribution of Risk Difference of random data set (threonine) of PKA-specific site prediction. C. Distribution of Risk Difference of human proteome data set (serine) of PKA-specific site prediction. D. Distribution of Risk Difference of Human proteome data set (threonine) of PKA-specific site prediction.
Figure 3
Figure 3
The prediction results of Bluetongue virus (BTV) nonstructural protein 2 (NS2), Drosophila transcription factor GAGA and human Calmodulin protein with PPSP. Figure 3A – prediction results of NS2; Figure 3B – prediction results of GAGA; Figure 3C – prediction results of Calmodulin.
Figure 4
Figure 4
The diagram of potential phosphorylation sites of human RasGrf1 (Q13972) and TID1 (Q96EY1) by TRK.

Similar articles

Cited by

References

    1. Schafmeier T, Haase A, Kaldi K, Scholz J, Fuchs M, Brunner M. Transcriptional feedback of neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell. 2005;122:235–246. doi: 10.1016/j.cell.2005.05.032. - DOI - PubMed
    1. Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, Hannig EM, Asano K. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol. 2005;25:5480–5491. doi: 10.1128/MCB.25.13.5480-5491.2005. - DOI - PMC - PubMed
    1. Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, Hu J, Wang Y, Yao X. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J Biol Chem. 2004;279:20049–20057. doi: 10.1074/jbc.M314205200. - DOI - PubMed
    1. Liu HY, MacDonald JI, Hryciw T, Li C, Meakin SO. Human tumorous imaginal disc 1 (TID1) associates with Trk receptor tyrosine kinases and regulates neurite outgrowth in nnr5-TrkA cells. J Biol Chem. 2005;280:19461–19471. doi: 10.1074/jbc.M500313200. - DOI - PubMed
    1. Robinson KN, Manto K, Buchsbaum RJ, MacDonald JI, Meakin SO. Neurotrophin-dependent tyrosine phosphorylation of Ras guanine-releasing factor 1 and associated neurite outgrowth is dependent on the HIKE domain of TrkA. J Biol Chem. 2005;280:225–235. doi: 10.1074/jbc.M505720200. - DOI - PubMed

Publication types

Substances