Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar-May;99(2-3):211-20.
doi: 10.1016/j.jphysparis.2005.12.014. Epub 2006 Jan 30.

Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis

Affiliations
Review

Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis

Jacques Durand et al. J Physiol Paris. 2006 Mar-May.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources