Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;16(3):312-20.
doi: 10.1002/hipo.20165.

GABAergic signaling in young granule cells in the adult rat and mouse dentate gyrus

Affiliations

GABAergic signaling in young granule cells in the adult rat and mouse dentate gyrus

Yashmin J G Karten et al. Hippocampus. 2006.

Abstract

Throughout most of the developing brain, including the hippocampus, GABAergic synapses are the first to become functional. Several features of GABAergic signaling change across development, suggesting that this signaling in the immature brain may play important roles in the growth of young neurons and the establishment of networks. To determine whether GABA(A) receptor (GABA(A)R)-containing synapses in new neurons born in the adult dentate gyrus have similar immature features, we examined spontaneous and evoked GABA(A)R-mediated synaptic currents in young (POMC-EGFP or doublecortin-immunostained) granule cells in acute slice preparations from adult mice and rats. Spontaneous inhibitory postsynaptic currents (IPSCs) were observed in nearly all immature granule cells, but their frequency was considerably lower and their decay time constant was nearly two times longer than in neighboring mature (doublecortin-non-immunoreactive or EGFP-non-expressing) granule cells within the sub-granular zone. Evoked IPSCs (eIPSCs) in mature granule cells, but not immature granule cells, were sensitive to zolpidem, suggesting a maturational increase in GABA(A)R alpha1-subunit expression. Perforated-patch recording revealed that eIPSCs depolarized young neurons, but hyperpolarized mature neurons. The early establishment of synaptic GABAergic inputs slow IPSC decay time, and depolarizing action of eIPSCs are remarkably similar to features previously seen in neurons during development, suggesting that they are intrinsic features of immature neurons and not functions of the surrounding circuitry. These developmental features in adult-born granule cells could play a role in maturational processes such as developmental cell death. However, treatment of adult mice with GABA(A)R agonists and an inverse agonist did not significantly alter the number of 4- to 14-day-old BrdU-labeled cells.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources