A molecular basis for NO selectivity in soluble guanylate cyclase
- PMID: 16407994
- DOI: 10.1038/nchembio704
A molecular basis for NO selectivity in soluble guanylate cyclase
Abstract
Soluble guanylate cyclases (sGCs) function as heme sensors that selectively bind nitric oxide (NO), triggering reactions essential to animal physiology. Recent discoveries place sGCs in the H-NOX family (heme nitric oxide/oxygen-binding domain), which includes bacterial proteins from aerobic and anaerobic organisms. Some H-NOX proteins tightly bind oxygen (O2), whereas others show no measurable affinity for O2, providing the basis for selective NO signaling in aerobic cells. Using a series of wild-type and mutant H-NOXs, we established a molecular basis for ligand discrimination. A distal pocket tyrosine is requisite for O2 binding in the H-NOX family. These data suggest that sGC uses a kinetic selection against O2; we propose that the O2 dissociation rate in the absence of this tyrosine is fast and that a stable O2 complex does not form.
Comment in
-
Pulling NO out of thin air.Nat Chem Biol. 2005 Jun;1(1):6-7. doi: 10.1038/nchembio0605-6. Nat Chem Biol. 2005. PMID: 16407983 No abstract available.
Similar articles
-
Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins.Curr Opin Chem Biol. 2005 Oct;9(5):441-6. doi: 10.1016/j.cbpa.2005.08.015. Curr Opin Chem Biol. 2005. PMID: 16125437 Review.
-
Insights into the distal heme pocket of H-NOX using fluoride as a probe for H-bonding interactions.J Inorg Biochem. 2013 Sep;126:91-5. doi: 10.1016/j.jinorgbio.2013.05.012. Epub 2013 Jun 3. J Inorg Biochem. 2013. PMID: 23792914
-
H-NOX domains display different tunnel systems for ligand migration.J Mol Graph Model. 2010 Jun;28(8):814-9. doi: 10.1016/j.jmgm.2010.02.007. Epub 2010 Mar 3. J Mol Graph Model. 2010. PMID: 20338794
-
Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain.Proteins. 2013 Aug;81(8):1363-76. doi: 10.1002/prot.24279. Epub 2013 Apr 22. Proteins. 2013. PMID: 23504767
-
Ligand specificity of H-NOX domains: from sGC to bacterial NO sensors.J Inorg Biochem. 2005 Apr;99(4):892-902. doi: 10.1016/j.jinorgbio.2004.12.016. J Inorg Biochem. 2005. PMID: 15811506 Review.
Cited by
-
How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase.Antioxid Redox Signal. 2012 Nov 1;17(9):1246-63. doi: 10.1089/ars.2012.4564. Epub 2012 Apr 10. Antioxid Redox Signal. 2012. PMID: 22356101 Free PMC article. Review.
-
Nitric Oxide Enters Quorum Sensing via the H-NOX Signaling Pathway in Vibrio parahaemolyticus.Front Microbiol. 2019 Sep 18;10:2108. doi: 10.3389/fmicb.2019.02108. eCollection 2019. Front Microbiol. 2019. PMID: 31620101 Free PMC article.
-
A Chemical Proteomic Map of Heme-Protein Interactions.J Am Chem Soc. 2022 Aug 24;144(33):15013-15019. doi: 10.1021/jacs.2c06104. Epub 2022 Aug 12. J Am Chem Soc. 2022. PMID: 35960875 Free PMC article.
-
Bacterial Haemoprotein Sensors of NO: H-NOX and NosP.Adv Microb Physiol. 2017;70:1-36. doi: 10.1016/bs.ampbs.2017.01.004. Epub 2017 Mar 18. Adv Microb Physiol. 2017. PMID: 28528645 Free PMC article. Review.
-
DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state.J Biol Inorg Chem. 2007 Feb;12(2):139-46. doi: 10.1007/s00775-006-0168-8. Epub 2006 Nov 3. J Biol Inorg Chem. 2007. PMID: 17082920
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources