Biological profiling of gene groups utilizing Gene Ontology
- PMID: 16362912
Biological profiling of gene groups utilizing Gene Ontology
Abstract
Increasingly used high throughput experimental techniques, like DNA or protein microarrays give as a result groups of interesting, e.g. differentially regulated genes which require further biological interpretation. With the systematic functional annotation provided by the Gene Ontology the information required to automate the interpretation task is now accessible. However, the determination of statistical significance of a biological process within these groups is still an open question. In answering this question, multiple testing issues must be taken into account to avoid misleading results. Here we present a statistical framework that tests whether functions, processes or locations described in the Gene Ontology are significantly enriched within a group of interesting genes when compared to a reference group. First we define an exact analytical expression for the expected number of false positives that allows us to calculate adjusted p-values to control the false discovery rate. Next, we demonstrate and discuss the capabilities of our approach using publicly available microarray data on cell-cycle regulated genes. Further, we analyze the robustness of our framework with respect to the exact gene group composition and compare the performance with earlier approaches. The software package GOSSIP implements our method and is made freely available at http://gossip.gene-groups.net/.
Similar articles
-
High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID).BMC Bioinformatics. 2005 Jul 5;6:168. doi: 10.1186/1471-2105-6-168. BMC Bioinformatics. 2005. PMID: 15998470 Free PMC article.
-
Multidimensional local false discovery rate for microarray studies.Bioinformatics. 2006 Mar 1;22(5):556-65. doi: 10.1093/bioinformatics/btk013. Epub 2005 Dec 20. Bioinformatics. 2006. PMID: 16368770
-
A Gibbs sampler for the identification of gene expression and network connectivity consistency.Bioinformatics. 2006 Dec 15;22(24):3040-6. doi: 10.1093/bioinformatics/btl541. Epub 2006 Oct 23. Bioinformatics. 2006. PMID: 17060361
-
DNA microarrays: is there a role for analytical chemistry?Analyst. 2005 Oct;130(10):1331-6. doi: 10.1039/b508677a. Epub 2005 Sep 2. Analyst. 2005. PMID: 16172653 Review.
-
[The statistical challenge of false positives with microarrays].Med Sci (Paris). 2008 Mar;24(3):317-9. doi: 10.1051/medsci/2008243317. Med Sci (Paris). 2008. PMID: 18334183 Review. French. No abstract available.
Cited by
-
Transcriptomic Profiling Analysis of Arabidopsis thaliana Treated with Exogenous Myo-Inositol.PLoS One. 2016 Sep 7;11(9):e0161949. doi: 10.1371/journal.pone.0161949. eCollection 2016. PLoS One. 2016. PMID: 27603208 Free PMC article.
-
Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum.Front Genet. 2015 Jan 8;5:453. doi: 10.3389/fgene.2014.00453. eCollection 2014. Front Genet. 2015. PMID: 25620978 Free PMC article.
-
TransFind--predicting transcriptional regulators for gene sets.Nucleic Acids Res. 2010 Jul;38(Web Server issue):W275-80. doi: 10.1093/nar/gkq438. Epub 2010 May 28. Nucleic Acids Res. 2010. PMID: 20511592 Free PMC article.
-
Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens.BMC Plant Biol. 2010 Apr 28;10:76. doi: 10.1186/1471-2229-10-76. BMC Plant Biol. 2010. PMID: 20426810 Free PMC article.
-
An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals.BMC Evol Biol. 2009 Sep 25;9:240. doi: 10.1186/1471-2148-9-240. BMC Evol Biol. 2009. PMID: 19781084 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources