Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct 14;7(3):E560-5.
doi: 10.1208/aapsj070356.

Opioid peptide-derived analgesics

Affiliations
Review

Opioid peptide-derived analgesics

Peter W Schiller. AAPS J. .

Abstract

Two recent developments of opioid peptide-based analgesics are reviewed. The first part of the review discusses the dermorphin-derived, cationic-aromatic tetrapeptide H-Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA, where Dmt indicates 2',6'-dimethyltyrosine), which showed subnanomolar mu receptor binding affinity, extraordinary mu receptor selectivity, and high mu agonist potency in vitro. In vivo, [Dmt(1)]DALDA looked promising as a spinal analgesic because of its extraordinary antinociceptive effect (3000 times more potent than morphine) in the mouse tail-flick assay, long duration of action (4 times longer than morphine), and lack of effect on respiration. Unexpectedly, [Dmt(1)]DALDA also turned out to be a potent and long-acting analgesic in the tail-flick test when given subcutaneously (s.c.), indicating that it is capable of crossing the blood-brain barrier. Furthermore, little or no cross-tolerance was observed with s.c. [Dmt(1)]DALDA in morphine-tolerant mice. The second part of the review concerns the development of mixed mu agonist/delta antagonists that, on the basis of much evidence, are expected to be analgesics with a low propensity to produce tolerance and physical dependence. The prototype pseudopeptide H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) (DIPP-NH(2)[Psi], where Tic indicates 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) showed subnanomolar mu and delta receptor binding affinities and the desired mu agonist/delta antagonist profile in vitro. DIPP-NH(2)[Psi] produced a potent analgesic effect after intracerebroventricular administration in the rat tail-flick assay, no physical dependence, and less tolerance than morphine. The results obtained with DIPP-NH(2)[Psi] indicate that mixed mu agonist/delta antagonists look promising as analgesic drug candidates, but compounds with this profile that are systemically active still need to be developed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate receptors. Science. 1986;233:774–776. doi: 10.1126/science.3016896. - DOI - PubMed
    1. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 2001;157:151–162. doi: 10.1007/s002130100788. - DOI - PubMed
    1. Yaksh TL. In vivo studies on spinal opiate receptor systems mediating antinociception, I: mu and delta receptor profiles in the primate. J Pharmacol Exp Ther. 1983;226:303–316. - PubMed
    1. Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther. 1984;230:341–348. - PubMed
    1. Cowan A, Zhu XZ, Mosberg HI, Omnaas JR, Porreca F. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther. 1988;246:950–955. - PubMed

Publication types