Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Dec;95(6):1521-40.
doi: 10.1111/j.1471-4159.2005.03515.x. Epub 2005 Nov 21.

3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease

Affiliations
Free article
Review

3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease

Emmanuel Brouillet et al. J Neurochem. 2005 Dec.
Free article

Abstract

Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the gene encoding Huntingtin. The mechanisms underlying the preferential degeneration of the striatum, the most striking neuropathological change in HD, are unknown. Of those probably involved, mitochondrial defects might play an important role. The behavioural and anatomical similarities found between HD and models using the mitochondrial toxin 3-nitropropionic acid (3NP) in rats and primates support this hypothesis. Here, we discuss the recently identified mechanisms of 3NP-induced striatal degeneration. Two types of important factor have been identified. The first are the 'executioner' components that have direct roles in cell death, such as c-Jun N-terminal kinase and Ca2+-activated protease calpains. The second are 'environmental' factors, such as glutamate, dopamine and adenosine, which modulate the striatal degeneration induced by 3NP. Interestingly, these recent studies support the hypothesis that 3NP and mutated Huntingtin have certain mechanisms of toxicity in common, suggesting that the use of 3NP might give new insights into the pathogenesis of HD. Research on 3NP provides additional proof that the neurochemical environment of a given neurone can determine its preferential vulnerability in neurodegenerative diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types