Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Nov;7(5):551-9.
doi: 10.1016/S1525-1578(10)60587-9.

Molecular diagnosis of severe acute respiratory syndrome: the state of the art

Affiliations
Review

Molecular diagnosis of severe acute respiratory syndrome: the state of the art

James B Mahony et al. J Mol Diagn. 2005 Nov.

Abstract

Severe acute respiratory syndrome (SARS) first appeared in Guangdong Province, China, in November 2002. Although virus isolation and serology were useful early in the SARS outbreak for diagnosing new cases, these tests are not generally useful because virus culture requires a BSL-3 laboratory and seroconversion is often delayed until 2 to 3 weeks after infection. The first qualitative reverse transcriptase-polymerase chain reaction tests for SARS-coronavirus (CoV) were sensitive and capable of detecting 1 to 10 genome equivalents. These assays were quickly supplemented with quantitative real-time assays that helped elucidate the natural history of SARS, particularly the initial presence of low viral loads in the upper respiratory tract and high viral loads in the lower respiratory tract. The unique natural history of SARS-CoV infection dictates the testing of both respiratory and nonrespiratory specimens, the testing of multiple specimens from the same patient, and sending out positives to be confirmed by a reference laboratory. Commercially available reverse transcriptase-polymerase chain reaction tests for SARS have recently appeared; however, meaningful evaluations of these assays have not yet been performed and their true performance has not been determined. These and other issues related to diagnosis of SARS-CoV infection are discussed in this review.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Vallet S, Gagneur A, Talbot PJ, Legrand M, Sizun J, Picard B. Detection of human coronavirus 229E in nasal specimens in large scale studies using an RT-PCR hybridization assay. Mol Cell Probes. 2004;18:75–80. - PMC - PubMed
    1. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. - PMC - PubMed
    1. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. - PMC - PubMed
    1. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. - PubMed
    1. Van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B. Identification of a new human coronavirus. Nat Med. 2004;10:368–373. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources