Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 19;19(4):523-34.
doi: 10.1016/j.molcel.2005.06.027.

The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription

Affiliations
Free article

The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription

Moon Kyoo Jang et al. Mol Cell. .
Free article

Abstract

Brd4 is a mammalian bromodomain protein that binds to acetylated chromatin. Proteomic analysis revealed that Brd4 interacts with cyclinT1 and Cdk9 that constitutes core positive transcription elongation factor b (P-TEFb). Brd4 interacted with P-TEFb in the living nucleus through its bromodomain. About half of P-TEFb was bound to the inhibitory subunit and functionally inactive. Brd4 interacted with P-TEFb that was free of the inhibitory subunit. An increase in Brd4 expression led to increased P-TEFb-dependent phosphorylation of RNA polymerase II (RNAPII) CTD and stimulation of transcription from promoters in vivo. Conversely, a reduction in Brd4 expression by siRNA reduced CTD phosphorylation and transcription, revealing that Brd4 is a positive regulatory component of P-TEFb. In chromatin immunoprecipitation (ChIP) assays, the recruitment of P-TEFb to a promoter was dependent on Brd4 and was enhanced by an increase in chromatin acetylation. Together, P-TEFb alternately interacts with Brd4 and the inhibitory subunit to maintain functional equilibrium in the cell.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms