Lateral prefrontal cortex: architectonic and functional organization
- PMID: 15937012
- PMCID: PMC1569489
- DOI: 10.1098/rstb.2005.1631
Lateral prefrontal cortex: architectonic and functional organization
Abstract
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral-caudal axis and a dorsal-ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal-ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.
Figures
Similar articles
-
Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey.Brain Struct Funct. 2007 Dec;212(3-4):269-301. doi: 10.1007/s00429-007-0158-9. Epub 2007 Sep 25. Brain Struct Funct. 2007. PMID: 17899184
-
Functional specialization of areas along the anterior-posterior axis of the primate prefrontal cortex.Cereb Cortex. 2017 Jul 1;27(7):3683-3697. doi: 10.1093/cercor/bhw190. Cereb Cortex. 2017. PMID: 27371761 Free PMC article.
-
Specialized systems for the processing of mnemonic information within the primate frontal cortex.Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1455-61; discussion 1461-2. doi: 10.1098/rstb.1996.0130. Philos Trans R Soc Lond B Biol Sci. 1996. PMID: 8941957 Review.
-
Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.Cereb Cortex. 2013 Oct;23(10):2457-66. doi: 10.1093/cercor/bhs223. Epub 2012 Aug 9. Cereb Cortex. 2013. PMID: 22879354 Free PMC article.
-
The role of the inferior frontal junction area in cognitive control.Trends Cogn Sci. 2005 Jul;9(7):314-6. doi: 10.1016/j.tics.2005.05.001. Trends Cogn Sci. 2005. PMID: 15927520 Review.
Cited by
-
Linking the evolution of two prefrontal brain regions to social and foraging challenges in primates.Elife. 2024 Oct 29;12:RP87780. doi: 10.7554/eLife.87780. Elife. 2024. PMID: 39468920 Free PMC article.
-
Time course of recovery showing initial prefrontal cortex changes at 16 weeks, extending to subcortical changes by 3 years in pediatric bipolar disorder.J Affect Disord. 2013 Sep 5;150(2):571-7. doi: 10.1016/j.jad.2013.02.007. Epub 2013 Mar 18. J Affect Disord. 2013. PMID: 23517886 Free PMC article.
-
Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling.Hum Brain Mapp. 2015 May;36(5):1662-76. doi: 10.1002/hbm.22728. Epub 2014 Dec 26. Hum Brain Mapp. 2015. PMID: 25545699 Free PMC article.
-
The variable nature of cognitive control: a dual mechanisms framework.Trends Cogn Sci. 2012 Feb;16(2):106-13. doi: 10.1016/j.tics.2011.12.010. Epub 2012 Jan 12. Trends Cogn Sci. 2012. PMID: 22245618 Free PMC article.
-
White matter alterations at 33-year follow-up in adults with childhood attention-deficit/hyperactivity disorder.Biol Psychiatry. 2013 Oct 15;74(8):591-8. doi: 10.1016/j.biopsych.2013.02.025. Epub 2013 Apr 6. Biol Psychiatry. 2013. PMID: 23566821 Free PMC article.
References
-
- Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings H.B.M, Zilles K. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 1999;412:319–341. - PubMed
-
- Andersen R, Gnadt J.W. Role of posterior parietal cortex in saccadic eye movements. In: Wurtz R, Goldberg M, editors. The neurobiology of saccadic eye movements. Elsevier; Amsterdam: 1989. pp. 315–335.
-
- Andersen R.A, Asanuma C, Essick G, Siegel R.M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 1990;296:65–113. - PubMed
-
- Bachevalier J, Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 1986;20:249–261. - PubMed
-
- Bailey P, Bonin G. University of Illinois Press; Urbana: 1951. The isocortex of man.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources