Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar 30;20(7):2584-9.
doi: 10.1021/la030306u.

Quantitative effect of nonionic surfactant partitioning on the hydrophile-lipophile balance temperature

Affiliations

Quantitative effect of nonionic surfactant partitioning on the hydrophile-lipophile balance temperature

M Ben Ghoulam et al. Langmuir. .

Abstract

Phase behaviors of water/nonionic surfactants/isooctane systems are determined experimentally in temperature-global surfactant concentration diagrams. The surfactants are monodistributed polyoxyethylene glycol n-dodecyl ether. They are used as model mixtures of two, three, or five compounds or as constituents of a commercial surfactant. It is found that the phase diagrams of these systems are bent gradually toward the highest temperatures as the global surfactant concentration decreases. Each phase diagram is well-characterized by the curve of the HLB (hydrophile-lipophile balance) temperature versus the global surfactant concentration. For any fixed global surfactant concentration, this temperature is the middle temperature of the three-phase region; it can be calculated from an additive rule of the HLB temperatures of the surfactants weighted by their mole fractions at the water/oil interface. These mole fractions are determined through the pseudophase model using surfactant partitioning. Calculations require the knowledge of the critical micelle concentration, the partition coefficient between water and oil, and the HLB temperature of each surfactant of the mixture. This treatment can be used to correctly predict the variation of the HLB temperatures of the surfactant mixtures studied versus the global surfactant concentration. Furthermore, these calculations show that the observed curvature of the phase diagrams at the lowest global concentrations is due to the most favorable partitioning toward the oil of the lowest ethoxylated surfactant molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources