Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;48(6):903-17.
doi: 10.1016/j.neuropharm.2004.12.023.

Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy

Affiliations
Comparative Study

Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy

H M Golan et al. Neuropharmacology. 2005 May.

Abstract

Intrauterine inflammation is a major risk for offspring neurodevelopmental brain damage and may result in cognitive limitations and poor cognitive and perceptual outcomes. Pro-inflammatory cytokines, stimulated during inflammatory response, have a pleotrophic effect on neurons and glia cells. They act in a dose-dependent manner, activate cell-death pathways and also act as trophic factors. In the present study, we have examined in mice the effect of short, systemic maternal inflammation on fetal brain development. Maternal inflammation, induced by lipopolysaccharide (LPS) at gestation day 17, did not affect morphogenic parameters and reflex development during the first month of life. However, maternal inflammation specifically increased the number of pyramidal and granular cells in the hippocampus, as well as the shrinkage of pyramidal cells, but not of the granular cells. No additional major morphological differences were observed in the cerebral cortex or cerebellum. In accordance with the morphological effects, maternal inflammation specifically impaired distinct forms of learning and memory, but not motor function or exploration in the adult offspring. The specific deficiency observed, following maternal inflammation, may suggest particular sensitivity of the hippocampus and other associated brain regions to inflammatory factors during late embryonic development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances