Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 1;69(5):841-54.
doi: 10.1016/j.bcp.2004.11.024. Epub 2005 Jan 12.

Contrasting the effects of nifedipine on subtypes of endogenous and recombinant T-type Ca2+ channels

Affiliations

Contrasting the effects of nifedipine on subtypes of endogenous and recombinant T-type Ca2+ channels

Alexander Shcheglovitov et al. Biochem Pharmacol. .

Abstract

There is evidence that nifedipine (Nif) - a dihydropyridine (DHP) Ca(2+)-channel antagonist mostly known for its L-type-specific action--is capable of blocking low voltage-activated (LVA or T-type) Ca(2+) channels as well. However, the discrimination by Nif of either various endogenous T-channel subtypes, evident from functional studies, or cloned Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 T-channel alpha 1 subunits have not been determined. Here, we investigated the effects of Nif on currents induced by Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 expression in Xenopus oocytes or HEK-293 cells (I(alpha 1G), I(alpha 1H) and I(alpha 1I), respectively) and two kinetically distinct, "fast" and "slow", LVA currents in thalamic neurons (I(LVA,f) and I(LVA,s)). At voltages of the maximums of respective currents the drug most potently blocked I(alpha 1H) (IC(50)=5 microM, max block 41%) followed by I(alpha 1G) (IC(50)=109 microM, 23%) and I(alpha 1I) (IC(50)=243 microM, 47%). The mechanism of blockade included interaction with Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 open and inactivated states. Nif blocked thalamic I(LVA,f) and I(LVA,s) with nearly equal potency (IC(50)=22 microM and 28 microM, respectively), but with different maximal inhibition (81% and 51%, respectively). We conclude that Ca(v)3.2 is the most sensitive to Nif, and that quantitative characteristics of drug action on T-type Ca(2+) channels depend on cellular system they are expressed in. Some common features in the voltage- and state-dependence of Nif action on endogenous and recombinant currents together with previous data on T-channel alpha 1 subunits mRNA expression patterns in the thalamus point to Ca(v)3.1 and Ca(v)3.3 as the major contributors to thalamic I(LVA,f) and I(LVA,s), respectively.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources