Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit
- PMID: 15696160
- DOI: 10.1038/nn1403
Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit
Abstract
Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.
Similar articles
-
Self-inhibition of olfactory bulb neurons.Nat Neurosci. 2002 Aug;5(8):760-6. doi: 10.1038/nn882. Nat Neurosci. 2002. PMID: 12089528
-
Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.J Neurophysiol. 2009 Apr;101(4):2052-61. doi: 10.1152/jn.90734.2008. Epub 2009 Feb 18. J Neurophysiol. 2009. PMID: 19225175
-
Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.J Neurophysiol. 2005 Mar;93(3):1285-94. doi: 10.1152/jn.00807.2004. Epub 2004 Oct 13. J Neurophysiol. 2005. PMID: 15483062
-
synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells.Anat Sci Int. 2005 Jun;80(2):80-90. doi: 10.1111/j.1447-073x.2005.00092.x. Anat Sci Int. 2005. PMID: 15960313 Review.
-
[Current concepts of general properties and plastic phenomena in hippocampal neurons].Usp Fiziol Nauk. 1984 Jan-Mar;15(1):28-54. Usp Fiziol Nauk. 1984. PMID: 6322465 Review. Russian. No abstract available.
Cited by
-
Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'.Elife. 2016 May 13;5:e16335. doi: 10.7554/eLife.16335. Elife. 2016. PMID: 27177421 Free PMC article.
-
Theta bursts in the olfactory nerve paired with beta-adrenoceptor activation induce calcium elevation in mitral cells: a mechanism for odor preference learning in the neonate rat.Learn Mem. 2009 Oct 26;16(11):676-81. doi: 10.1101/lm.1569309. Print 2009 Nov. Learn Mem. 2009. PMID: 19858361 Free PMC article.
-
Target-specific control of olfactory bulb periglomerular cells by GABAergic and cholinergic basal forebrain inputs.Elife. 2022 Feb 28;11:e71965. doi: 10.7554/eLife.71965. Elife. 2022. PMID: 35225232 Free PMC article.
-
Group I mGluR activation enhances Ca(2+)-dependent nonselective cation currents and rhythmic bursting in main olfactory bulb external tufted cells.J Neurosci. 2009 Sep 23;29(38):11943-53. doi: 10.1523/JNEUROSCI.0206-09.2009. J Neurosci. 2009. PMID: 19776280 Free PMC article.
-
Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit.Neuron. 2008 Jan 24;57(2):276-289. doi: 10.1016/j.neuron.2007.11.028. Neuron. 2008. PMID: 18215624 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous