Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:148:353-65.
doi: 10.1016/S0079-6123(04)48028-5.

Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy

Affiliations
Review

Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy

Stephen G Waxman. Prog Brain Res. 2005.

Abstract

Cerebellar dysfunction in multiple sclerosis (MS) is a significant contributor to disability, is relatively refractory to symptomatic therapy, and often progresses despite treatment with disease-modifying agents. Thus, there is a need for better understanding of its pathophysiology. This chapter reviews a growing body of evidence which suggests that mis-tuning of Purkinje cells, due to expression of an abnormal repertoire of sodium channels, contributes to cerebellar deficits in MS. Within the normal nervous system, sodium channel Na(v)1.8 is expressed in a highly specific manner within spinal sensory and trigeminal neurons, and is not present within Purkinje cells, Na(v)1.8 mRNA and protein are, however, expressed within Purkinje cells both in models of MS (experimenal autoimmume encephalomyelitis; EAE), and in postmortem tissue from humans with MS. Expression of Na(v)1.8 within Purkinje cells in vitro alters electrogenesis in these cells in several ways: first, by increasing duration and amplitude of action potentials; second, by decreasing the proportion of action potentials that are conglomerate and the number of spikes per conglomerate action potential; and third, by supporting sustained, pacemaker-like impulse trains in response to depolarization, which are not seen in the absence of Na(v)1.8. Similar changes are observed in recordings from Purkinje cells in vivo from mice with EAE. Taken together, these results suggest that expression of Na(v)1.8 within Purkinje cells distorts their pattern of firing in MS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources