Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004;24(3):401-16.
doi: 10.1385/JMN:24:3:401.

Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate

Affiliations

Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate

Silvia Mandel et al. J Mol Neurosci. 2004.

Abstract

One of the prominent pathological features of Parkinson's disease (PD) is the abnormal accumulation of iron in the substantia nigra pars compacta (SNpc), in the reactive microglia, and in association with neuromelanin, within the melanin-containing dopamine (DA) neurons. Lewy body, the morphological hallmark of PD, is composed of lipids, redox-active iron, and aggregated alpha-synuclein, concentrating in its peripheral halo and ubiquitinated, hyperphosphorylated, neurofilament proteins. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. Recent observations, that iron induces aggregation of inert alpha-synuclein to toxic aggregates, have reinforced the critical role of iron in oxidative stress-induced pathogenesis of DA neuron degeneration and protein degradation via ubiquitination. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and 6-hydroxydopamine-induced neurodegeneration in rodents and nonhuman primates is associated with increased presence of iron and alpha-synuclein in the SNpc. The accumulation of iron in MPTP-induced neurodegeneration has been linked to nitric oxide-dependent mechanism, resulting in degradation of prominent iron regulatory proteins by ubiquitination. Radical scavengers such as R-apomorphine and green tea catechin polyphenol (-)-epigallocatechin-3-gallate, as well as the recently developed brain-permeable VK-28 series derivative iron chelators, which are neuroprotective against these neurotoxins in mice and rats, prevent the accumulation of iron and alpha-synuclein in SNpc. This study supports the notion that a combination of iron chelation and antioxidant therapy, as emphasized on several occasions, might be a significant approach to neuroprotection in PD and other neurodegenerative diseases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brain Res. 1997 Oct 31;773(1-2):76-81 - PubMed
    1. Expert Rev Neurother. 2002 May;2(3):403-16 - PubMed
    1. Brain Res Mol Brain Res. 1991 Oct;11(3-4):335-43 - PubMed
    1. Mov Disord. 1998;13 Suppl 1:24-34 - PubMed
    1. Trends Pharmacol Sci. 2003 Apr;24(4):184-91 - PubMed

Publication types

MeSH terms

LinkOut - more resources