Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar-Apr;45(2-3):115-27.
doi: 10.1002/em.20094.

Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana

Affiliations
Review

Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana

Bernard A Kunz et al. Environ Mol Mutagen. 2005 Mar-Apr.

Abstract

As obligate phototrophs, and despite shielding strategies, plants sustain DNA damage caused by UV radiation in sunlight. By inhibiting DNA replication and transcription, such damage may contribute to the detrimental effects of UV radiation on the growth, productivity, and genetic stability of higher plants. However, there is evidence that plants can reverse UV-induced DNA damage by photoreactivation or remove it via nucleotide excision repair. In addition, plants may have mechanisms for tolerating UV photoproducts as a means of avoiding replicative arrest. Recently, phenotypic characterization of plant mutants, functional complementation studies, and cDNA analysis have implicated genes isolated from the model plant Arabidopsis thaliana in nucleotide excision repair or tolerance of UV-induced DNA damage. Here, we briefly review features of these processes in human cells, collate information on Arabidopsis homologs of the relevant genes, and summarize the experimental findings that link certain of these plant genes to nucleotide excision repair or damage tolerance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources