Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells
- PMID: 15527783
- PMCID: PMC7125663
- DOI: 10.1016/j.febslet.2004.10.005
Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells
Abstract
Severe acute respiratory syndrome (SARS) has become a global public health emergency. p38 mitogen-activated protein kinase (MAPK) and its downstream targets are activated in SARS coronavirus (SARS-CoV)-infected Vero E6 cells and activation of p38 MAPK enhances the cytopathic effects of SARS-CoV infection. In addition, weak activation of Akt cannot prevent SARS-CoV infection-induced apoptosis in Vero E6 cells. In the present study, we demonstrated that signal transducer and activator of transcription (STAT) 3, which is constitutively phosphorylated at tyrosine (Tyr)-705 and slightly phosphorylated at serine (Ser)-727 in Vero E6 cells, was dephosphorylated at Tyr-705 on SARS-CoV infection. In addition to phosphorylation of p38 MAPK in virus-infected cells, other MAPKs, i.e., extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK), were phosphorylated. Although inhibitors of ERK1/2 and JNK (PD98059 and SP600125) had no effect on phosphorylation status of STAT3, inhibitors of p38 MAPK (SB203580 and SB202190) partially inhibited dephosphorylation of STAT3 at Tyr-705. Tyr-705-phosphorylated STAT3 was localized mainly in the nucleus in mock infected cells, whereas STAT3 disappeared from the nucleus in virus-infected cells. As STAT3 acts as an activator of transcription in the nucleus, these results suggest that STAT3 lacks its activity on transcription in SARS-CoV-infected Vero E6 cells.
Figures
Similar articles
-
JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells.Biochim Biophys Acta. 2005 Jun 30;1741(1-2):4-10. doi: 10.1016/j.bbadis.2005.04.004. Biochim Biophys Acta. 2005. PMID: 15916886 Free PMC article.
-
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.FEBS Lett. 2006 Feb 20;580(5):1417-24. doi: 10.1016/j.febslet.2006.01.066. Epub 2006 Jan 30. FEBS Lett. 2006. PMID: 16458888 Free PMC article.
-
Inhibition of cell proliferation by SARS-CoV infection in Vero E6 cells.FEMS Immunol Med Microbiol. 2006 Mar;46(2):236-43. doi: 10.1111/j.1574-695X.2005.00028.x. FEMS Immunol Med Microbiol. 2006. PMID: 16487305 Free PMC article.
-
Signal transduction in SARS-CoV-infected cells.Ann N Y Acad Sci. 2007 Apr;1102(1):86-95. doi: 10.1196/annals.1408.006. Ann N Y Acad Sci. 2007. PMID: 17470913 Free PMC article. Review.
-
SARS-CoV-2 cytopathic effect (host tox counterscreen).SARS-CoV-2 Assays [Internet]. Bethesda (MD): National Center for Advancing Translational Sciences (NCATS); 2020–. SARS-CoV-2 Assays [Internet]. Bethesda (MD): National Center for Advancing Translational Sciences (NCATS); 2020–. PMID: 35512049 Free Books & Documents. Review.
Cited by
-
Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.mBio. 2021 Mar 30;12(2):e00023-21. doi: 10.1128/mBio.00023-21. mBio. 2021. PMID: 33785629 Free PMC article.
-
Comorbidities and Susceptibility to COVID-19: A Generalized Gene Set Data Mining Approach.J Clin Med. 2021 Apr 13;10(8):1666. doi: 10.3390/jcm10081666. J Clin Med. 2021. PMID: 33924631 Free PMC article.
-
Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription.Nucleic Acids Res. 2005 Apr 7;33(6):e65. doi: 10.1093/nar/gni064. Nucleic Acids Res. 2005. PMID: 15817564 Free PMC article.
-
COVID-19 and cardiovascular diseases.J Mol Cell Biol. 2021 Jul 6;13(3):161-167. doi: 10.1093/jmcb/mjaa064. J Mol Cell Biol. 2021. PMID: 33226078 Free PMC article. Review.
-
Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates.BMC Genomics. 2014 Dec 22;15(1):1161. doi: 10.1186/1471-2164-15-1161. BMC Genomics. 2014. PMID: 25534508 Free PMC article.
References
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J., Science, 300, (2003), 1394– 1399. - PubMed
-
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L., Science, 300, (2003), 1399– 1404. - PubMed
-
- Garrington T.P., Johnson G.L., Curr. Opin. Cell. Biol, 11, (1999), 211– 218. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous