Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis
- PMID: 15466049
- PMCID: PMC522202
- DOI: 10.1128/JB.186.20.6956-6969.2004
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Figures
Similar articles
-
Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.J Bacteriol. 2016 Nov 18;198(24):3379-3390. doi: 10.1128/JB.00571-16. Print 2016 Dec 15. J Bacteriol. 2016. PMID: 27736793 Free PMC article.
-
A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane.Mol Biosyst. 2014 May;10(5):1043-54. doi: 10.1039/c3mb70421a. Mol Biosyst. 2014. PMID: 24553424
-
Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics.J Bacteriol. 1997 Nov;179(22):7135-55. doi: 10.1128/jb.179.22.7135-7155.1997. J Bacteriol. 1997. PMID: 9371463 Free PMC article.
-
Metabolic processes of Methanococcus maripaludis and potential applications.Microb Cell Fact. 2016 Jun 10;15(1):107. doi: 10.1186/s12934-016-0500-0. Microb Cell Fact. 2016. PMID: 27286964 Free PMC article. Review.
-
Methanococcus maripaludis: an archaeon with multiple functional MCM proteins?Biochem Soc Trans. 2009 Feb;37(Pt 1):1-6. doi: 10.1042/BST0370001. Biochem Soc Trans. 2009. PMID: 19143592 Review.
Cited by
-
The Oligosaccharyltransferase AglB Supports Surface-Associated Growth and Iron Oxidation in Methanococcus maripaludis.Appl Environ Microbiol. 2021 Aug 11;87(17):e0099521. doi: 10.1128/AEM.00995-21. Epub 2021 Aug 11. Appl Environ Microbiol. 2021. PMID: 34132588 Free PMC article.
-
Random transposon mutagenesis identifies genes essential for transformation in Methanococcus maripaludis.Mol Genet Genomics. 2023 May;298(3):537-548. doi: 10.1007/s00438-023-01994-7. Epub 2023 Feb 24. Mol Genet Genomics. 2023. PMID: 36823423 Free PMC article.
-
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis.J Bacteriol. 2007 Oct;189(20):7281-9. doi: 10.1128/JB.00828-07. Epub 2007 Aug 17. J Bacteriol. 2007. PMID: 17704226 Free PMC article.
-
ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases.J Bioenerg Biomembr. 2005 Dec;37(6):455-60. doi: 10.1007/s10863-005-9491-y. J Bioenerg Biomembr. 2005. PMID: 16691483 Review.
-
Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease.J Bacteriol. 2005 Feb;187(3):972-9. doi: 10.1128/JB.187.3.972-979.2005. J Bacteriol. 2005. PMID: 15659675 Free PMC article.
References
-
- Afting, C., E. Kremmer, C. Brucker, A. Hochheimer, and R. K. Thauer. 2000. Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch. Microbiol. 174:225-232. - PubMed
-
- Armitage, J. P., and R. Schmitt. 1997. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143:3671-3682. - PubMed
-
- Bahl, H., H. Scholz, N. Bayan, M. Chami, G. Leblon, T. Gulik-Krzywicki, E. Shechter, A. Fouet, S. Mesnage, E. Tosi-Couture, P. Gounon, M. Mock, E. Conway de Macario, A. J. L. Macario, L. A. Fernandez-Herrero, G. Olabarria, J. Berenguer, M. J. Blaser, B. Kuen, W. Lubitz, M. Sara, P. H. Pouwels, C. P. Kolen, H. J. Boot, and S. Resch. 1997. Molecular biology of S-layers. FEMS Microbiol. Rev. 20:47-98. - PubMed
-
- Bakhiet, N., F. W. Forney, D. P. Stahly, and L. Daniels. 1984. Lysine biosynthesis in Methanobacterium thermoautotrophicum is by the diaminopimelic acid pathway. Curr. Microbiol. 10:195-198.
-
- Bell, S. D., and S. P. Jackson. 1998. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 6:222-228. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases