Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;92(6):3244-54.
doi: 10.1152/jn.00257.2004. Epub 2004 Aug 11.

Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity

Affiliations
Free article

Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity

V Khatri et al. J Neurophysiol. 2004 Dec.
Free article

Abstract

Layer IV circuitry in the rodent whisker-to-barrel pathway transforms the thalamic input signal spatially and temporally. Excitatory and inhibitory barrel neurons display response properties that differ from each other and from their common thalamic inputs. Here we further examine thalamocortical response transformations by characterizing the responses of individual thalamic barreloid neurons and presumed excitatory and inhibitory cortical barrel neurons to periodic whisker deflections varying in frequency from 1 to 40 Hz. Both pulsatile and sinusoidal periodic stimulation of fixed deflection amplitude were used to assess stimulus-evoked adaptation of thalamocortical units (TCUs), fast-spike barrel units (FSUs: presumed inhibitory neurons), and regular-spike barrel units (RSUs: presumed excitatory neurons). Monotonic, frequency-dependent reductions in firing were observed in thalamic and cortical neurons to the second and subsequent stimuli in trains of high (pulsatile)- and low (sinusoidal)-velocity deflections. RSUs and FSUs adapted substantially more than their thalamic input neurons, and at all frequencies, FSUs fired at higher rates than the other two cell types. For example at 40 Hz, response magnitudes of TCUs decreased by 34%, FSUs by 72%, and RSUs by 78%. Across frequencies, RSUs and FSUs displayed more cycle-by-cycle entrainment and phase-locked responses for (high velocity) pulsatile than (lower velocity) sinusoidal deflections; for TCUs, phase-locking was equivalent for both stimuli, but entrainment was higher for sinusoidal deflections. Strong feed-forward inhibition, in conjunction with synaptic depression, renders the firing of barrel neurons sparse but temporally faithful to the occurrence of repetitive whisker deflections, especially when they are of high velocity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources