Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;12(3):601-7.

Prostate-related antigen-derived new peptides having the capacity of inducing prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients

Affiliations
  • PMID: 15289844

Prostate-related antigen-derived new peptides having the capacity of inducing prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients

Mamoru Harada et al. Oncol Rep. 2004 Sep.

Abstract

Prostate-related antigens, including prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP), can be targets in specific immunotherapy for prostate cancer. In this study, we attempted to newly identify epitope peptides from these 2 antigens, which are immunogenic in human histocompatibility leukocyte antigen (HLA)-A2+ prostate cancer patients. Twenty-nine peptides (PSMA with 15 and PAP with 14) were prepared based on the HLA-A2 binding motif. Based on our previous finding that antigenic peptides recognized by both cellular and humoral immune systems are useful for peptide-based immunotherapy, peptide candidates were screened first by their ability to be recognized by immunoglobulin G (IgG), and then by their ability to induce peptide-specific cytotoxic T lymphocytes (CTLs). As a result, PSMA441-450 and PAP112-120 peptides were found to be frequently recognized by IgG in plasma from prostate cancer patients. These 2 candidates effectively induced HLA-A2-restricted and prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients with several HLA-A2 subtypes. In addition, their cytotoxicity was mainly dependent on peptide-specific and CD8+ T cells. These results indicate that these PSMA441-450 and PAP112-120 peptides could be promising candidates for peptide-based immunotherapy for HLA-A2(+) prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms