Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct 15;279(42):44154-65.
doi: 10.1074/jbc.M401646200. Epub 2004 Jul 22.

Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein

Affiliations
Free article

Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein

Susan L Heilman-Miller et al. J Biol Chem. .
Free article

Abstract

During human immunodeficiency virus type 1 minus-strand transfer, the nucleocapsid protein (NC) facilitates annealing of the complementary repeat regions at the 3'-ends of acceptor RNA and minus-strand strong-stop DNA ((-) SSDNA). In addition, NC destabilizes the highly structured complementary trans-activation response element (TAR) stem-loop (TAR DNA) at the 3'-end of (-) SSDNA and inhibits TAR-induced self-priming, a dead-end reaction that competes with minus-strand transfer. To investigate the relationship between nucleic acid secondary structure and NC function, a series of truncated (-) SSDNA and acceptor RNA constructs were used to assay minus-strand transfer and self-priming in vitro. The results were correlated with extensive enzymatic probing and mFold analysis. As the length of (-) SSDNA was decreased, self-priming increased and was highest when the DNA contained little more than TAR DNA, even if NC and acceptor were both present; in contrast, truncations within TAR DNA led to a striking reduction or elimination of self-priming. However, destabilization of TAR DNA was not sufficient for successful strand transfer: the stability of acceptor RNA was also crucial, and little or no strand transfer occurred if the RNA was highly stable. Significantly, NC may not be required for in vitro strand transfer if (-) SSDNA and acceptor RNA are small, relatively unstructured molecules with low thermodynamic stabilities. Collectively, these findings demonstrate that for efficient NC-mediated minus-strand transfer, a delicate thermodynamic balance between the RNA and DNA reactants must be maintained.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources