Predicting protein-peptide interactions via a network-based motif sampler
- PMID: 15262809
- DOI: 10.1093/bioinformatics/bth922
Predicting protein-peptide interactions via a network-based motif sampler
Abstract
Motivation: Many protein-protein interactions are mediated by peptide recognition modules (PRMs), compact domains that bind to short peptides, and play a critical role in a wide array of biological processes. Recent experimental protein interaction data provide us with an opportunity to examine whether we may explain, or even predict their interactions by computational sequence analysis. Such a question was recently posed by the use of random peptide screens to characterize the ligands of one such PRM, the SH3 domain.
Results: We describe a general computational procedure for identifying the ligand peptides of PRMs by combining protein sequence information and observed physical interactions into a simple probabilistic model and from it derive an interaction-mediated de novo motif-finding framework. Using a recent all-versus-all yeast two-hybrid SH3 domain interaction network, we demonstrate that our technique can be used to derive independent predictions of interactions mediated by SH3 domains. We show that only when sequence information is combined with such all versus all protein interaction datasets, are we capable of identifying motifs with sufficient sensitivity and specificity for predicting interactions. The algorithm is general so that it may be applied to other PRM domains (e.g. SH2, WW, PDZ).
Availability: The Netmotsa software and source code, as part of a general Gibbs motif sampling library, are available at http://sf.net/projects/netmotsa
Similar articles
-
A regularized discriminative model for the prediction of protein-peptide interactions.Bioinformatics. 2006 Mar 1;22(5):532-40. doi: 10.1093/bioinformatics/bti804. Epub 2006 Jan 5. Bioinformatics. 2006. PMID: 16397010
-
Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions.Bioinformatics. 2009 Jul 1;25(13):1632-9. doi: 10.1093/bioinformatics/btp264. Epub 2009 Apr 17. Bioinformatics. 2009. PMID: 19376827
-
Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.J Mol Biol. 2008 Feb 29;376(4):1201-14. doi: 10.1016/j.jmb.2007.12.054. Epub 2008 Jan 3. J Mol Biol. 2008. PMID: 18206907
-
Computational prediction of protein-protein interactions.Methods Mol Biol. 2004;261:445-68. doi: 10.1385/1-59259-762-9:445. Methods Mol Biol. 2004. PMID: 15064475 Review.
-
Domain-mediated protein interaction prediction: From genome to network.FEBS Lett. 2012 Aug 14;586(17):2751-63. doi: 10.1016/j.febslet.2012.04.027. Epub 2012 May 3. FEBS Lett. 2012. PMID: 22561014 Review.
Cited by
-
A neural strategy for the inference of SH3 domain-peptide interaction specificity.BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S13. doi: 10.1186/1471-2105-6-S4-S13. BMC Bioinformatics. 2005. PMID: 16351739 Free PMC article.
-
SH3 domains come of age.FEBS Lett. 2012 Aug 14;586(17):2606-8. doi: 10.1016/j.febslet.2012.05.025. Epub 2012 Jun 5. FEBS Lett. 2012. PMID: 22683951 Free PMC article. Review.
-
Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners.PLoS Comput Biol. 2007 Apr 27;3(4):e43. doi: 10.1371/journal.pcbi.0030043. PLoS Comput Biol. 2007. PMID: 17465672 Free PMC article. Review.
-
Using genome-wide measurements for computational prediction of SH2-peptide interactions.Nucleic Acids Res. 2009 Aug;37(14):4629-41. doi: 10.1093/nar/gkp394. Epub 2009 Jun 5. Nucleic Acids Res. 2009. PMID: 19502496 Free PMC article.
-
The use of Gene Ontology terms for predicting highly-connected 'hub' nodes in protein-protein interaction networks.BMC Syst Biol. 2008 Sep 16;2:80. doi: 10.1186/1752-0509-2-80. BMC Syst Biol. 2008. PMID: 18796161 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources