Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;9(3):301-14.

The influence of protease inhibitor resistance profiles on selection of HIV therapy in treatment-naive patients

Affiliations
  • PMID: 15259893
Review

The influence of protease inhibitor resistance profiles on selection of HIV therapy in treatment-naive patients

Dan Turner et al. Antivir Ther. 2004 Jun.

Abstract

Although protease inhibitors (PIs) have dramatically improved outcomes in HIV-infected patients, half still fail treatment with PI-based combination therapy. Genetic pressure from incomplete viral suppression rapidly selects for HIV variants with protease gene mutations that confer reduced susceptibility to PI drugs. A number of specific amino acid substitutions have been associated with PI resistance. However, high-level resistance to individual PIs requires the accumulation of several primary and secondary mutations, developing along drug-specific, step-wise pathways. HIV variants resistant to saquinavir and ritonavir usually contain L90M and V82A substitutions, respectively. Indinavir resistance may be linked to substitutions at positions 46 or 82. Resistance to nelfinavir is primarily associated with D30N but may alternatively be found with L90M. Resistance during exposure to amprenavir can follow development of I50V, which also may confer resistance to lopinavir. Failure during treatment with atazanavir is closely linked to 150L. The overlapping of these pathways can lead to multiple-PI resistance, limiting therapeutic options in antiretroviral-experienced patients. Reduced susceptibility to more than one PI is most likely to be associated with amino acid substitutions at six positions: 10, 46, 54, 82, 84 and 90. Other mutations (D30N, G48V, I50V or I50L) are relatively specific for particular PIs and are less likely to produce cross resistance. Certain resistance mutations selected by exposure to one PI may actually increase susceptibility to others. Patients newly diagnosed with HIV infection are increasingly found to harbour virus that is resistant to the more commonly used drugs. Newer PIs may select for mutations that result in less cross resistance with older agents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms