Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun 15;10(12 Pt 1):4029-37.
doi: 10.1158/1078-0432.CCR-03-0249.

Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01

Affiliations

Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01

Panomwat Amornphimoltham et al. Clin Cancer Res. .

Abstract

Squamous carcinomas of the head and neck (HNSCC) represent the sixth most common cancer among men worldwide and a major cause of morbidity and mortality due to its relatively poor prognosis. As part of ongoing studies addressing the molecular events underlying tumor progression in HNSCC, we have explored the nature of the proliferative pathways in which dysregulation may promote aberrant cell growth in this tumor type. The serine/threonine protein kinase Akt is a downstream target of phosphatidylinositol 3-kinase and a key regulator of normal and cancerous growth and cell fate decisions. Therefore, in this study, we have examined the status of activation of Akt in different stages of squamous cell carcinoma development in mice and in clinical samples from HNSCC patients. By immunohistochemical analysis, using a recently developed phosphorylation state-specific antibody, we demonstrated that Akt activation correlates closely with the progression of mouse skin squamous cell carcinoma. We also observed that activation of Akt is a frequent event in human HNSCC because active Akt can be detected in these tumors with a pattern of expression and localization correlating with the progression of the lesions. In line with these observations, Akt was constitutively activated in a large fraction of HNSCC-derived cell lines. We also provide evidence that the Akt signaling pathway may represent a biologically relevant target for a novel antineoplastic agent, UCN-01, which recently has been shown to be active in cellular and xenograft models for HNSCC at concentrations safely achievable in clinically relevant situations.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms