Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun 29;43(25):8116-24.
doi: 10.1021/bi049589v.

A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase

Affiliations
Comparative Study

A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase

Andrew M Schumacher et al. Biochemistry. .

Abstract

Death-associated protein kinase (DAPK) is a calmodulin (CaM)-regulated protein kinase and a drug-discovery target for neurodegenerative diseases. However, a protein substrate relevant to neuronal death had not been described. We identified human brain CaM-regulated protein kinase kinase (CaMKK), an enzyme key to neuronal survival, as the first relevant substrate protein by using a focused proteomics- and informatics-based approach that can be generalized to protein kinase open reading frames identified in genome projects without prior knowledge of biochemical context. First, DAPK-interacting proteins were detected in yeast two-hybrid screens and in immunoprecipitates of brain extracts. Second, potential phosphorylation site sequences in yeast two-hybrid hits were identified on the basis of our previous results from positional-scanning synthetic-peptide substrate libraries and molecular modeling. Third, reconstitution assays using purified components demonstrated that DAPK phosphorylates CaMKK with a stoichiometry of nearly 1 mol of phosphate per mole of CaMKK and a K(m) value of 3 microM. Fourth, S511 was identified as the phosphorylation site by peptide mapping using mass spectrometry, site-directed mutagenesis, and Western blot analysis with a site-directed antisera targeting the phosphorylated sequence. Fifth, a potential mechanism of action was identified on the basis of the location of S511 near the CaM recognition domain of CaMKK and demonstrated by attenuation of CaM-stimulated CaMKK autophosphorylation after DAPK phosphorylation. The results raise the possibility of a CaM-regulated protein kinase cascade as a key mechanism in acute neurodegeneration amenable to therapeutic targeting.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources