Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 May;23(5):1235-40.
doi: 10.1897/03-264.

Assessing behavioral toxicity with Caenorhabditis elegans

Affiliations
Comparative Study

Assessing behavioral toxicity with Caenorhabditis elegans

Gary L Anderson et al. Environ Toxicol Chem. 2004 May.

Abstract

Behavior, even in simple metazoans, depends upon integrated processes at the subcellular, cellular, and organismal level, and thus is susceptible to disruption by a broad spectrum of chemicals. Locomotor behavior (movement) of the small free-living nematode Caenorhabditis elegans has proven to be useful in assessing toxicity. Recently reported observations suggest that behavioral change (reduced movement) occurs after 4 h of exposure to heavy metals, and that with abbreviated exposure, the concentration-response relationship for Pb (a known neurotoxic metal) differs from that for Cu. In this study, movement was evaluated after 4-h exposures for nine compounds from three chemical classes: organic pesticides, organic solvents, and heavy metals. Concentration-dependent reduction of movement was observed for all test compounds with the exception of mebendazole, for which test concentrations were limited by solubility. Within each chemical class, movement was more sensitive to the neurotoxic compounds than to substances not believed to be neurotoxic, as evidenced by behavioral effective concentration to reduce average worm movement to 50% of the control movement values (e.g., levamisole and chlorpyrifos < mebendazole, ethanol and acetone < dimethylsulfoxide, and Pb and Al < Cu). These observations are discussed as they relate to the use of acute behavioral tests in assessing general chemical toxicity, and the enhanced value of 4-h testing for the detection of neural toxicants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources