Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 30;17(2):217-22.

Mechanism of transcriptional repression by TEL/RUNX1 fusion protein

Affiliations
  • PMID: 15179033
Free article

Mechanism of transcriptional repression by TEL/RUNX1 fusion protein

Young Ju Lee et al. Mol Cells. .
Free article

Abstract

Human chromosomal translocation t(12;21)(p12;q22) is one of the most frequent rearrangement in human leukemia, and produces the TEL/RUNX1 fusion protein. The TEL/RUNX1 fusion protein creates a transcriptional repressor that interferes in dominant fashion with RUNX1-dependent transactivation. Here, we demonstrate that the repressor activity of TEL/ RUNX1 differs from that of TEL, even though both TEL and TEL/RUNX1 interact with the nuclear hormone co-repressor (N-CoR) and histone deacetylase (mSin3A) in vivo. Co-immunoprecipitation experiments demonstrated that TEL/RUNX1 forms homodimers in vivo, and heterodimerizes with the TEL when the two proteins are expressed together. These interactions require the HLH (helix-loop-helix) region of TEL. Immunoprecipitation and immunofluorescence analysis showed that p300 interacts with TEL/RUNX1 and is sequestered in the cytoplasm by it. These results suggest that the p300-TEL/RUNX1 complex and heterodimerization of TEL/RUNX1 with TEL may be responsible for the ability of TEL/RUNX1 to inhibit RUNX1-mediated transactivation. It appears that loss of TEL function activates a pathway that cooperates with TEL/RUNX1 and sequesters coactivator(s) into nonfunctional complex in the cytoplasm thus inhibiting transcription of target genes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources