Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jun;85(3):281-91.
doi: 10.1023/B:BREA.0000025418.88785.2b.

Three-dimensional in vitro tissue culture models of breast cancer-- a review

Affiliations
Review

Three-dimensional in vitro tissue culture models of breast cancer-- a review

Jong Bin Kim et al. Breast Cancer Res Treat. 2004 Jun.

Abstract

Three-dimensional (3D) in vitro breast tumour models have an invaluable role in tumour biology today providing some very important insights into breast cancer. As well as increasing our understanding of homeostasis, cellular differentiation and tissue organization they provide a well defined environment for cancer research in contrast to the complex host environment of an in vivo model. With the recent availability of relevant stromal elements together with the vast array of extracellular matrix constituents available, in vivo like microenvironments can be recreated. These tissue like structures more realistically model the structural architecture and differentiated function of breast cancer than a cellular monolayer providing in vivo like responses to therapeutic agents. Three dimensional in vitro models allow the study of cell-cell and cell-extracellular matrix interactions, in addition to the influence of the microenvironment on cellular differentiation, proliferation, apoptosis and gene expression. Due to their enormous potential 3D cultures are currently being exploited by many other branches of biomedical science with therapeutically orientated studies becoming the major focus of research. In return great progress in 3D culture techniques have been made, largely due to this greater interaction. At present they are being used in studies ranging from investigating the role of adhesion molecules (e.g., E-cadherin) in invasion/metastasis; VEGF and angiogenesis, to tissue modelling and remodelling. Progress in the development of complex 3D culture systems is more productive than ever, however further research is vital.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms