Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;55(399):1135-43.
doi: 10.1093/jxb/erh124. Epub 2004 Apr 23.

A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus

Affiliations

A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus

Jing Quan Yu et al. J Exp Bot. 2004 May.

Abstract

The effects of 24-epibrassinolide (EBR) spray application on gas-exchange, chlorophyll fluorescence characteristics, Rubisco activity, and carbohydrate metabolism were investigated in cucumber (Cucumis sativus L. cv. Jinchun No. 3) plants grown in a greenhouse. EBR significantly increased the light-saturated net CO(2) assimilation rate (A(sat)) from 3 h to 7d after spraying, with 0.1 mg l(-1) EBR proving most effective. Increased A(sat) in EBR-treated leaves was accompanied by increases in the maximum carboxylation rate of Rubisco (V(c,max)) and in the maximum rate of RuBP regeneration (J(max)). EBR-treated leaves also had a higher quantum yield of PSII electron transport (phi(PSII)) than the controls, which was mainly due to a significant increase in the photochemical quenching (q(P)), with no change in the efficiency of energy capture by open PSII reaction centres (F'(v)/F'(m)). EBR did not influence photorespiration. In addition, significant increases in the initial activity of Rubisco and in the sucrose, soluble sugars, and starch contents were observed followed by substantial increases in sucrose phosphate synthase (SPS), sucrose synthase (SS), and acid invertase (AI) activities after EBR treatment. It was concluded that EBR increases the capacity of CO(2) assimilation in the Calvin cycle, which was mainly attributed to an increase in the initial activity of Rubisco.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms