Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:32 Suppl:S88-93.
doi: 10.1002/ana.410320715.

Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?

Affiliations
Review

Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?

E C Hirsch. Ann Neurol. 1992.

Abstract

Although the cause of neuronal death in Parkinson's disease remains unknown, a hyperoxidation phenomenon has been implicated as a potential cytotoxic mechanism. Catecholaminergic neurons containing neuromelanin, an autoxidation byproduct of catecholamines, are more vulnerable in Parkinson's disease than nonmelanized catecholaminergic neurons. High levels of CuZn superoxide dismutase mRNA have been observed in the substantia nigra, suggesting that high levels of oxygen free radicals are indeed produced in the structure. Catecholaminergic neurons surrounded by a low density of glutathione peroxidase cells are more susceptible to degeneration in Parkinson's disease than those well protected against oxidative stress. The nigral content in iron, a compound that exacerbates the production of free radicals in catecholaminergic neurons, is increased in Parkinson's disease. Altogether these data suggest that hyperoxidation may participate in the selective vulnerability of catecholaminergic neurons in Parkinson's disease.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources