Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;53(4):921-30.
doi: 10.2337/diabetes.53.4.921.

Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle

Affiliations

Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle

Edward B Arias et al. Diabetes. 2004 Apr.

Abstract

Increased flux through the hexosamine biosynthetic pathway and increased O-linked glycosylation (N-acetylglucosamine [O-GlcNAc]) of proteins have been implicated in insulin resistance. Previous research in 3T3-L1 adipocytes indicated that insulin-stimulated glucose uptake and phosphorylation of Akt were reduced after incubation with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc; 100 micromol/l), an inhibitor of the O-GlcNAcase that catalyzes removal of O-GlcNAc from proteins. Therefore, in this study, we tested the effects of PUGNAc on skeletal muscle. Incubation of rat epitrochlearis muscles for 19 h with 100 micromol/l PUGNAc resulted in a marked increase in O-GlcNAcylation of multiple proteins. Incubation with PUGNAc reduced glucose transport with a physiologic insulin concentration without affecting glucose transport without insulin or with supraphysiologic insulin. PUGNAc did not significantly alter insulin-stimulated phosphorylation of Akt (serine and threonine) or its substrates glycogen synthase kinase (GSK)3 alpha and GSK3 beta. Insulin stimulated a dose-dependent (12.0 > 0.6 > 0 nmol/l) increase in the phosphorylation of a 160-kDa protein detected using an antibody against an Akt substrate phosphomotif. PUGNAc treatment did not alter phosphorylation of this protein. These results indicate that PUGNAc is an effective inhibitor of O-GlcNAcase in skeletal muscle and suggest that O-GlcNAc modification of proteins can induce insulin resistance in skeletal muscle independent of attenuated phosphorylation of Akt, GSK 3 alpha, GSK3 beta, and a 160-kDa protein with an Akt phosphomotif.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms