Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar 15;159(6):603-10.
doi: 10.1093/aje/kwh075.

Comparison of the missing-indicator method and conditional logistic regression in 1:m matched case-control studies with missing exposure values

Affiliations
Comparative Study

Comparison of the missing-indicator method and conditional logistic regression in 1:m matched case-control studies with missing exposure values

Xianbin Li et al. Am J Epidemiol. .

Abstract

The missing-indicator method and conditional logistic regression have been recommended as alternative approaches for data analysis in matched case-control studies with missing exposure values. The authors evaluated the performance of the two methods using Monte Carlo simulation. Data were generated from a 1:m matched design based on McNemar's 2 x 2 tables with four scenarios for missing values: completely-at-random, case-dependent, exposure-dependent, and case/exposure-dependent. In their analysis, the authors used conditional logistic regression for complete pairs and the missing-indicator method for all pairs. For 1:1 matched studies, given no confounding between exposure and disease, the two methods yielded unbiased estimates. Otherwise, conditional logistic regression produced unbiased estimates with empirical confidence interval coverage similar to nominal coverage under the first three missing-value scenarios, whereas the missing-indicator method produced slightly more bias and lower confidence interval coverage. An increased number of matched controls was associated with slightly more bias and lower confidence interval coverage. Under the case/exposure-dependent missing-value scenario, neither method performed satisfactorily; this indicates the need for more sophisticated statistical methods for handling such missing values. Overall, compared with the missing-indicator method, conditional logistic regression provided a slight advantage in terms of bias and coverage probability, at the cost of slightly reduced statistical power and efficiency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources