Inferring cellular networks using probabilistic graphical models
- PMID: 14764868
- DOI: 10.1126/science.1094068
Inferring cellular networks using probabilistic graphical models
Abstract
High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.
Similar articles
-
Low-order conditional independence graphs for inferring genetic networks.Stat Appl Genet Mol Biol. 2006;5:Article1. doi: 10.2202/1544-6115.1170. Epub 2006 Jan 4. Stat Appl Genet Mol Biol. 2006. PMID: 16646863
-
Probabilistic representation of gene regulatory networks.Bioinformatics. 2004 Sep 22;20(14):2258-69. doi: 10.1093/bioinformatics/bth236. Epub 2004 Apr 8. Bioinformatics. 2004. PMID: 15073019
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.Bioinformatics. 2006 Oct 15;22(20):2523-31. doi: 10.1093/bioinformatics/btl391. Epub 2006 Jul 14. Bioinformatics. 2006. PMID: 16844710
-
Bioinformatics and cellular signaling.Curr Opin Biotechnol. 2004 Feb;15(1):78-81. doi: 10.1016/j.copbio.2004.01.003. Curr Opin Biotechnol. 2004. PMID: 15102471 Review.
-
Computational methods for discovering gene networks from expression data.Brief Bioinform. 2009 Jul;10(4):408-23. doi: 10.1093/bib/bbp028. Brief Bioinform. 2009. PMID: 19505889 Review.
Cited by
-
Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles.PLoS One. 2013 Jun 25;8(6):e67142. doi: 10.1371/journal.pone.0067142. Print 2013. PLoS One. 2013. PMID: 23825635 Free PMC article.
-
Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.PLoS One. 2013 Jun 24;8(6):e67410. doi: 10.1371/journal.pone.0067410. Print 2013. PLoS One. 2013. PMID: 23826291 Free PMC article.
-
Silence on the relevant literature and errors in implementation.Nat Biotechnol. 2015 Apr;33(4):336-9. doi: 10.1038/nbt.3185. Nat Biotechnol. 2015. PMID: 25850052 No abstract available.
-
Machine learning applications in genetics and genomics.Nat Rev Genet. 2015 Jun;16(6):321-32. doi: 10.1038/nrg3920. Epub 2015 May 7. Nat Rev Genet. 2015. PMID: 25948244 Free PMC article. Review.
-
Computational approaches for network-based integrative multi-omics analysis.Front Mol Biosci. 2022 Nov 14;9:967205. doi: 10.3389/fmolb.2022.967205. eCollection 2022. Front Mol Biosci. 2022. PMID: 36452456 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources