Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;84(Pt 12):3291-3303.
doi: 10.1099/vir.0.19505-0.

Proliferative growth of SARS coronavirus in Vero E6 cells

Affiliations

Proliferative growth of SARS coronavirus in Vero E6 cells

M-L Ng et al. J Gen Virol. 2003 Dec.

Abstract

An isolate of SARS coronavirus (strain 2003VA2774) was obtained from a patient and used to infect Vero E6 cells. The replication cycle of the virus was followed from 1 to 30 h post-infection (p.i.). It was surprising to observe the swift growth of this human virus in Vero cells. Within the first hour of infection, the most obvious ultrastructural change was the proliferation of the Golgi complexes and related vesicles accompanied by swelling of some of the trans-Golgi sacs. Extracellular virus particles were present by 5 h p.i. in about 5 % of the cells and this increased dramatically to about 30 % of the cell population within an hour (6 h p.i.). Swollen Golgi sacs contained virus nucleocapsids at different stages of maturation. These virus precursors were also in large vacuoles and in close association with membrane whorls. The membrane whorls could be the replication complexes, since they appeared rather early in the replication cycle. As infection progressed from 12 to 21 h p.i., the cytoplasm of the infected cells was filled with numerous large, smooth-membraned vacuoles containing a mixture of mature virus and spherical cores. Several of these vacuoles were close to the cell periphery, ready to export out the mature progeny virus particles via exocytosis. By 24 to 30 h p.i., crystalline arrays of the extracellular virus particles were seen commonly at the cell surface.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources