Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors
- PMID: 14640209
Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors
Abstract
Anaerobic BTEX biodegradation was tested in batch experiments using an anaerobic sediment as inoculum under Fe(III) and Mn(IV) reducing conditions. All BTEX were degraded under the conditions tested, specially under Mn(IV) reducing conditions, where benzene was degraded at a rate of 0.8 micromol l(-1) d(-1), significantly much faster than Fe(III) reducing conditions. Under Fe(III) reducing conditions, ethylbenzene was the compound that degraded at the faster rate of 0.19 micromol l(-1) d(-1). Mn(IV) reducing conditions are energetically more favourable than Fe(III), therefore, BTEX were more rapidly degraded under Mn(IV) reducing conditions. These results represent the first report of the degradation of benzene with Mn(IV) as the final electron acceptor. Amorphous manganese oxide is a natural widely distributed metal in groundwater, where it can be microbiologically reduced, leading to the degradation of monoaromatic compounds.
Similar articles
-
A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.J Contam Hydrol. 2008 Feb 19;96(1-4):17-31. doi: 10.1016/j.jconhyd.2007.09.006. Epub 2007 Sep 29. J Contam Hydrol. 2008. PMID: 17964687
-
Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea.Water Sci Technol. 2001;44(7):165-71. Water Sci Technol. 2001. PMID: 11724483
-
Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site.J Contam Hydrol. 2003 Dec;67(1-4):269-99. doi: 10.1016/S0169-7722(03)00034-2. J Contam Hydrol. 2003. PMID: 14607480
-
Anaerobic degradation of monoaromatic hydrocarbons.Appl Microbiol Biotechnol. 2004 May;64(4):437-46. doi: 10.1007/s00253-003-1526-x. Epub 2004 Jan 21. Appl Microbiol Biotechnol. 2004. PMID: 14735323 Review.
-
Dissimilatory Fe(III) and Mn(IV) reduction.Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5. Adv Microb Physiol. 2004. PMID: 15518832 Review.
Cited by
-
Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach.Geosci Front. 2023 Mar;14(2):1-13. doi: 10.1016/j.gsf.2022.101494. Geosci Front. 2023. PMID: 36760680 Free PMC article.
-
Anaerobic benzene degradation by bacteria.Microb Biotechnol. 2011 Nov;4(6):710-24. doi: 10.1111/j.1751-7915.2011.00260.x. Epub 2011 Mar 30. Microb Biotechnol. 2011. PMID: 21450012 Free PMC article. Review.
-
Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus.Appl Environ Microbiol. 2011 Sep;77(17):5926-33. doi: 10.1128/AEM.05452-11. Epub 2011 Jul 8. Appl Environ Microbiol. 2011. PMID: 21742914 Free PMC article.
-
Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review.Microorganisms. 2022 Oct 29;10(11):2142. doi: 10.3390/microorganisms10112142. Microorganisms. 2022. PMID: 36363734 Free PMC article. Review.
-
Anaerobic benzene mineralization by natural microbial communities from Niger Delta.Biodegradation. 2021 Feb;32(1):37-52. doi: 10.1007/s10532-020-09922-x. Epub 2020 Dec 2. Biodegradation. 2021. PMID: 33269416 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical