The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance
- PMID: 14623976
- PMCID: PMC283515
- DOI: 10.1073/pnas.2235848100
The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance
Abstract
Isoniazid (INH), a frontline antitubercular drug, inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. Here, we report that the INH-NAD adduct is a slow, tight-binding competitive inhibitor of InhA. Demonstration that the adduct binds to WT InhA by a two-step enzyme inhibition mechanism, with initial, weak binding (K(-1) = 16 +/- 11 nM) followed by slow conversion to a final inhibited complex (EI*) with overall Ki = 0.75 +/- 0.08 nM, reconciles existing contradictory values for the inhibitory potency of INH-NAD for InhA. The first order rate constant for conversion of the initial EI complex to EI* (k2 = 0.13 +/- 0.01 min(-1)) is similar to the maximum rate constant observed for InhA inhibition in reaction mixtures containing InhA, INH, NADH, and the INH-activating enzyme KatG (catalase/peroxidase from M. tuberculosis), consistent with an inhibition mechanism in which the adduct forms in solution rather than on the enzyme. Importantly, three mutations that correlate with INH resistance, I21V, I47T, and S94A, have little impact on the inhibition constants. Thus, drug resistance does not result simply from a reduction in affinity of INH-NAD for pure InhA. Instead, we hypothesize that protein-protein interactions within the FASII complex are critical to the mechanism of INH action. Finally, for M161V, an InhA mutation that correlates with resistance to the common biocide triclosan in Mycobacterium smegmatis, binding to form the initial EI complex is significantly weakened, explaining why this mutant inactivates more slowly than WT InhA when incubated with INH, NADH, and KatG.
Figures





Similar articles
-
Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.J Struct Biol. 2007 Sep;159(3):369-80. doi: 10.1016/j.jsb.2007.04.009. Epub 2007 May 3. J Struct Biol. 2007. PMID: 17588773
-
Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis.J Mol Biol. 2006 Jun 9;359(3):646-66. doi: 10.1016/j.jmb.2006.03.055. Epub 2006 Apr 21. J Mol Biol. 2006. PMID: 16647717
-
Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis.Protein Sci. 2007 Aug;16(8):1617-27. doi: 10.1110/ps.062749007. Epub 2007 Jun 28. Protein Sci. 2007. PMID: 17600151 Free PMC article.
-
Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis.Arch Pharm (Weinheim). 2016 Nov;349(11):817-826. doi: 10.1002/ardp.201600186. Epub 2016 Oct 24. Arch Pharm (Weinheim). 2016. PMID: 27775177 Review.
-
Recent progress in the identification and development of InhA direct inhibitors of Mycobacterium tuberculosis.Mini Rev Med Chem. 2010 Mar;10(3):181-92. doi: 10.2174/138955710791185064. Mini Rev Med Chem. 2010. PMID: 20408801 Review.
Cited by
-
Binding Affinity Determination in Drug Design: Insights from Lock and Key, Induced Fit, Conformational Selection, and Inhibitor Trapping Models.Int J Mol Sci. 2024 Jun 28;25(13):7124. doi: 10.3390/ijms25137124. Int J Mol Sci. 2024. PMID: 39000229 Free PMC article. Review.
-
Isonicotinic acid hydrazide conversion to Isonicotinyl-NAD by catalase-peroxidases.J Biol Chem. 2010 Aug 20;285(34):26662-73. doi: 10.1074/jbc.M110.139428. Epub 2010 Jun 15. J Biol Chem. 2010. PMID: 20554537 Free PMC article.
-
Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis.Biochemistry. 2006 Nov 28;45(47):13947-53. doi: 10.1021/bi061874m. Biochemistry. 2006. PMID: 17115689 Free PMC article.
-
Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.PLoS Comput Biol. 2009 Jul;5(7):e1000423. doi: 10.1371/journal.pcbi.1000423. Epub 2009 Jul 3. PLoS Comput Biol. 2009. PMID: 19578428 Free PMC article.
-
A Four-Point Screening Method for Assessing Molecular Mechanism of Action (MMOA) Identifies Tideglusib as a Time-Dependent Inhibitor of Trypanosoma brucei GSK3β.PLoS Negl Trop Dis. 2016 Mar 4;10(3):e0004506. doi: 10.1371/journal.pntd.0004506. eCollection 2016 Mar. PLoS Negl Trop Dis. 2016. PMID: 26942720 Free PMC article.
References
-
- Bloom, B. R. & Murray, C. J. (1992) Science 257, 1055–1064. - PubMed
-
- Heym, B., Honore, N., Truffot-Pernot, C., Banerjee, A., Schurra, C., Jacobs WR, Jr., van Embden, J. D., Grosset, J. H. & Cole, S. T. (1994) Lancet 344, 293–298. - PubMed
-
- Perlman, D. C., ElSadr, W. M., Heifets, L. B., Nelson, E. T., Matts, J. P., Chirgwin, K., Salomon, N., Telzak, E. E., Klein, O., Kreiswirth, B. N., et al. (1997) AIDS 11, 1473–1478. - PubMed
-
- Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. (1992) Nature 358, 591–593. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous